Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1967, Volume 1, Issue 3, Pages 291–298 (Mi mzm9416)  

This article is cited in 20 scientific papers (total in 20 papers)

Inequalities for the norms of a function and its derivatives in metric Lp

V. N. Gabushin

Sverdlovsk Division, V.A. Steklov Mathematics Institute, Academy of Sciences of the USSR
Received: 27.10.1966
English version:
Mathematical Notes, 1967, Volume 1, Issue 3, Pages 194–198
DOI: https://doi.org/10.1007/BF01098882
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. N. Gabushin, “Inequalities for the norms of a function and its derivatives in metric Lp”, Mat. Zametki, 1:3 (1967), 291–298; Math. Notes, 1:3 (1967), 194–198
Citation in format AMSBIB
\Bibitem{Gab67}
\by V.~N.~Gabushin
\paper Inequalities for the norms of a function and its derivatives in metric $L_p$
\jour Mat. Zametki
\yr 1967
\vol 1
\issue 3
\pages 291--298
\mathnet{http://mi.mathnet.ru/mzm9416}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=206700}
\zmath{https://zbmath.org/?q=an:0164.15301|0152.12703}
\transl
\jour Math. Notes
\yr 1967
\vol 1
\issue 3
\pages 194--198
\crossref{https://doi.org/10.1007/BF01098882}
Linking options:
  • https://www.mathnet.ru/eng/mzm9416
  • https://www.mathnet.ru/eng/mzm/v1/i3/p291
  • This publication is cited in the following 20 articles:
    1. N. Bensmain, “Convergence rate of sieves estimates for an autoregressive Hilbert space”, Communications in Statistics - Theory and Methods, 2025, 1  crossref
    2. Vitalii V. Arestov, “Approximation of differentiation operators by bounded linear operators in lebesgue spaces on the axis and related problems in the spaces of $(p,q)$-multipliers and their predual spaces”, Ural Math. J., 9:2 (2023), 4–27  mathnet  crossref
    3. Kozynenko O. Skorokhodov D., “Kolmogorov-Type Inequalities For the Norms of Fractional Derivatives of Functions Defined on the Positive Half Line”, Ukr. Math. J., 72:10 (2021), 1579–1594  crossref  isi
    4. G. S. Balashova, “Estimates of the norms of derivatives in the one- and multidimensional cases”, Sib. elektron. matem. izv., 17 (2020), 865–872  mathnet  crossref
    5. V. V. Arestov, R. R. Akopyan, “Zadacha Stechkina o nailuchshem priblizhenii neogranichennogo operatora ogranichennymi i rodstvennye ei zadachi”, Tr. IMM UrO RAN, 26, no. 4, 2020, 7–31  mathnet  crossref  elib
    6. Babenko V.F. Churilova M.S. Parfinovych N.V. Skorokhodov D.S., “Kolmogorov Type Inequalities For the Marchaud Fractional Derivatives on the Real Line and the Half-Line”, J. Inequal. Appl., 2014, 504  crossref  isi
    7. V. V. Arestov, M. A. Filatova, “The best approximation of the differentiation operator by linear bounded operators in the space L 2 on the semiaxis”, Dokl. Math., 90:2 (2014), 592  crossref
    8. Vitalii Arestov, Maria Filatova, “Best approximation of the differentiation operator in the space L2 on the semiaxis”, Journal of Approximation Theory, 187 (2014), 65  crossref
    9. V. V. Arestov, M. A. Filatova, “On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 24–40  mathnet  crossref  isi  elib
    10. S. K. Bagdasarov, “Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm”, Izv. Math., 74:2 (2010), 219–279  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. R. M. Trigub, “Comparison of Linear Differential Operators”, Math. Notes, 82:3 (2007), 380–394  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. Mark Coppejans, “On efficient estimation of the ordered response model”, Journal of Econometrics, 137:2 (2007), 577  crossref
    13. Mark Coppejans, “Estimation of the binary response model using a mixture of distributions estimator (MOD)”, Journal of Econometrics, 102:2 (2001), 231  crossref
    14. S. K. Bagdasarov, “Extremal functions of integral functionals in $H^\omega[a,b]$”, Izv. Math., 63:3 (1999), 425–480  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. V. V. Arestov, “The best approximation to a class of functions of several variables by another class and related extremum problems”, Math. Notes, 64:3 (1998), 279–294  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    16. S. K. Bagdasarov, “Maximization of functionals in $H^\omega [a,b]$”, Sb. Math., 189:2 (1998), 159–226  mathnet  crossref  crossref  mathscinet  zmath  isi
    17. Xiaotong Shen, “On methods of sieves and penalization”, Ann. Statist., 25:6 (1997)  crossref
    18. V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    19. V. I. Burenkov, N. B. Viktorova, “The embedding theorem for Sobolev spaces with mixed norm for limit exponents”, Math. Notes, 59:1 (1996), 45–51  mathnet  crossref  crossref  mathscinet  zmath  isi
    20. V. N. Gabushin, “Inequalities between derivatives in $L_p$-metrics for $0<p\leqslant\infty$”, Math. USSR-Izv., 10:4 (1976), 823–844  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :255
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025