|
$\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules
Q. X. Panab, X. L. Zhuab a Nanjing Agricultural University, China
b Nanjing University, China
Abstract:
Let $R$ be a ring. This paper introduces and studies $\mathcal{GP}$-projective and $\mathcal{GI}$-injective left $R$-modules. Our main goal is to investigate the “global” dimension
$$
\operatorname{GPID}(R)=\sup\{\operatorname{id}(M)\mid M\in{_R\mathcal{M}},\,\text{$M$ is Gorenstein projective}\}.
$$
Keywords:
Gorenstein dimension, $\mathcal{GP}$-projective module, $\mathcal{GI}$-injective module, left-$\operatorname{GPI}$ ring, semisimple ring.
Received: 20.09.2011
Citation:
Q. X. Pan, X. L. Zhu, “$\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules”, Mat. Zametki, 91:6 (2012), 870–879; Math. Notes, 91:6 (2012), 824–832
Linking options:
https://www.mathnet.ru/eng/mzm9390https://doi.org/10.4213/mzm9390 https://www.mathnet.ru/eng/mzm/v91/i6/p870
|
Statistics & downloads: |
Abstract page: | 374 | Full-text PDF : | 156 | References: | 43 | First page: | 10 |
|