Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 1, Pages 70–82
DOI: https://doi.org/10.4213/mzm9381
(Mi mzm9381)
 

This article is cited in 5 scientific papers (total in 5 papers)

Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2

I. A. Mednykh

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (511 kB) Citations (5)
References:
Abstract: Discrete versions of Accola and Farkas' theorems on the hyperellipticity of coverings of a Riemann surface of genus 2 are proved.
Keywords: hyperelliptic graph, hyperelliptic covering, 2-edge-connected graph, genus of a graph, harmonic morphism of graphs, Riemann surface.
Received: 03.03.2012
Revised: 09.11.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 1, Pages 84–94
DOI: https://doi.org/10.1134/S0001434614070074
Bibliographic databases:
Document Type: Article
UDC: 519.177+517.545
Language: Russian
Citation: I. A. Mednykh, “Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2”, Mat. Zametki, 96:1 (2014), 70–82; Math. Notes, 96:1 (2014), 84–94
Citation in format AMSBIB
\Bibitem{Med14}
\by I.~A.~Mednykh
\paper Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 1
\pages 70--82
\mathnet{http://mi.mathnet.ru/mzm9381}
\crossref{https://doi.org/10.4213/mzm9381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344275}
\zmath{https://zbmath.org/?q=an:1315.30008}
\elib{https://elibrary.ru/item.asp?id=21826526}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 1
\pages 84--94
\crossref{https://doi.org/10.1134/S0001434614070074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340938800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906493249}
Linking options:
  • https://www.mathnet.ru/eng/mzm9381
  • https://doi.org/10.4213/mzm9381
  • https://www.mathnet.ru/eng/mzm/v96/i1/p70
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :186
    References:48
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024