Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 2, Pages 207–217
DOI: https://doi.org/10.4213/mzm9370
(Mi mzm9370)
 

This article is cited in 40 scientific papers (total in 40 papers)

The Inverse Problem of Determining the Lower-Order Coefficient in Parabolic Equations with Integral Observation

V. L. Kamynin

National Engineering Physics Institute "MEPhI", Moscow
References:
Abstract: Existence and uniqueness theorems for the solution to the inverse problem of determining the lower-order coefficient in multidimensional parabolic equations with integral observation are obtained. An estimate of the maximum of the modulus of the unknown coefficient with a constant explicitly expressed via the input data of the problem is given.
Keywords: multidimensional parabolic equation, inverse problem for parabolic equations with integral observation, maximum principle, Cordes-type condition.
Received: 26.01.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 2, Pages 205–213
DOI: https://doi.org/10.1134/S0001434613070201
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: V. L. Kamynin, “The Inverse Problem of Determining the Lower-Order Coefficient in Parabolic Equations with Integral Observation”, Mat. Zametki, 94:2 (2013), 207–217; Math. Notes, 94:2 (2013), 205–213
Citation in format AMSBIB
\Bibitem{Kam13}
\by V.~L.~Kamynin
\paper The Inverse Problem of Determining the Lower-Order Coefficient in Parabolic Equations with Integral Observation
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 2
\pages 207--217
\mathnet{http://mi.mathnet.ru/mzm9370}
\crossref{https://doi.org/10.4213/mzm9370}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206082}
\zmath{https://zbmath.org/?q=an:06228543}
\elib{https://elibrary.ru/item.asp?id=20731770}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 2
\pages 205--213
\crossref{https://doi.org/10.1134/S0001434613070201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323665000020}
\elib{https://elibrary.ru/item.asp?id=20456116}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883408124}
Linking options:
  • https://www.mathnet.ru/eng/mzm9370
  • https://doi.org/10.4213/mzm9370
  • https://www.mathnet.ru/eng/mzm/v94/i2/p207
  • This publication is cited in the following 40 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:702
    Full-text PDF :335
    References:99
    First page:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024