Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 6, Pages 869–877
DOI: https://doi.org/10.4213/mzm9309
(Mi mzm9309)
 

This article is cited in 1 scientific paper (total in 1 paper)

Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles

M. E. Lipatov

M. V. Lomonosov Moscow State University
Full-text PDF (473 kB) Citations (1)
References:
Abstract: It is proved that any $\mathrm{SO}_0(1,d)$-valued cocycle over an ergodic (probability) measure-preserving automorphism is cohomologous to a cocycle having one of three special forms; the recurrence property of such cocycles is also studied.
Keywords: cocycle, ergodic automorphism, recurrence of cocycles, Lorentz group $\mathrm{SO}_0(1,d)$, cohomology, conformal barycenter.
Received: 25.11.2011
Revised: 28.07.2012
English version:
Mathematical Notes, 2013, Volume 93, Issue 6, Pages 850–857
DOI: https://doi.org/10.1134/S0001434613050246
Bibliographic databases:
Document Type: Article
UDC: 519.218
Language: Russian
Citation: M. E. Lipatov, “Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles”, Mat. Zametki, 93:6 (2013), 869–877; Math. Notes, 93:6 (2013), 850–857
Citation in format AMSBIB
\Bibitem{Lip13}
\by M.~E.~Lipatov
\paper Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 6
\pages 869--877
\mathnet{http://mi.mathnet.ru/mzm9309}
\crossref{https://doi.org/10.4213/mzm9309}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206037}
\zmath{https://zbmath.org/?q=an:06198928}
\elib{https://elibrary.ru/item.asp?id=20731744}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 6
\pages 850--857
\crossref{https://doi.org/10.1134/S0001434613050246}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321274300024}
\elib{https://elibrary.ru/item.asp?id=20438774}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879740936}
Linking options:
  • https://www.mathnet.ru/eng/mzm9309
  • https://doi.org/10.4213/mzm9309
  • https://www.mathnet.ru/eng/mzm/v93/i6/p869
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:437
    Full-text PDF :184
    References:51
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024