Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 6, Pages 821–827
DOI: https://doi.org/10.4213/mzm9305
(Mi mzm9305)
 

This article is cited in 3 scientific papers (total in 3 papers)

Note on the Holonomy Groups of Pseudo-Riemannian Manifolds

A. S. Galaev

Masaryk University
Full-text PDF (463 kB) Citations (3)
References:
Abstract: For an arbitrary subalgebra $\mathfrak{h}\subset\mathfrak{so}(r,s)$ a polynomial pseudo-Riemannian metric of signature $(r+2,s+2)$ is constructed, the holonomy algebra of this metric contains $\mathfrak{h}$ as a subalgebra. This result shows the essential distinction between the holonomy algebras of pseudo-Riemannian manifolds of index greater than or equal to $2$ and the holonomy algebras of Riemannian and Lorentzian manifolds.
Keywords: holonomy algebra, pseudo-Riemannian manifolds, linear connection, Levi-Cività connection, curvature tensor, Lorentzian manifold.
Received: 05.12.2011
English version:
Mathematical Notes, 2013, Volume 93, Issue 6, Pages 810–815
DOI: https://doi.org/10.1134/S0001434613050209
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: A. S. Galaev, “Note on the Holonomy Groups of Pseudo-Riemannian Manifolds”, Mat. Zametki, 93:6 (2013), 821–827; Math. Notes, 93:6 (2013), 810–815
Citation in format AMSBIB
\Bibitem{Gal13}
\by A.~S.~Galaev
\paper Note on the Holonomy Groups of Pseudo-Riemannian Manifolds
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 6
\pages 821--827
\mathnet{http://mi.mathnet.ru/mzm9305}
\crossref{https://doi.org/10.4213/mzm9305}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206033}
\zmath{https://zbmath.org/?q=an:06198924}
\elib{https://elibrary.ru/item.asp?id=20731740}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 6
\pages 810--815
\crossref{https://doi.org/10.1134/S0001434613050209}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321274300020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879764277}
Linking options:
  • https://www.mathnet.ru/eng/mzm9305
  • https://doi.org/10.4213/mzm9305
  • https://www.mathnet.ru/eng/mzm/v93/i6/p821
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :177
    References:64
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024