Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 6, Pages 857–870
DOI: https://doi.org/10.4213/mzm9303
(Mi mzm9303)
 

This article is cited in 4 scientific papers (total in 4 papers)

An Elementary Proof of the Jordan–Kronecker Theorem

I. K. Kozlov

M. V. Lomonosov Moscow State University
Full-text PDF (504 kB) Citations (4)
References:
Abstract: This paper presents a proof of the Jordan–Kronecker theorem on the reduction to canonical form of a pair of skew-symmetric bilinear forms on a finite-dimensional linear space over an algebraically closed field.
Keywords: Jordan–Kronecker theorem, skew-symmetric bilinear form, Jordan block, Kronecker block, algebraically closed field, finite-dimensional linear space, self-adjoint operator, symplectic space, Lagrange subspace.
Received: 16.12.2011
Revised: 26.12.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 6, Pages 885–896
DOI: https://doi.org/10.1134/S0001434613110254
Bibliographic databases:
Document Type: Article
UDC: 512.647.2
Language: Russian
Citation: I. K. Kozlov, “An Elementary Proof of the Jordan–Kronecker Theorem”, Mat. Zametki, 94:6 (2013), 857–870; Math. Notes, 94:6 (2013), 885–896
Citation in format AMSBIB
\Bibitem{Koz13}
\by I.~K.~Kozlov
\paper An Elementary Proof of the Jordan--Kronecker Theorem
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 6
\pages 857--870
\mathnet{http://mi.mathnet.ru/mzm9303}
\crossref{https://doi.org/10.4213/mzm9303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3227030}
\zmath{https://zbmath.org/?q=an:1288.15028}
\elib{https://elibrary.ru/item.asp?id=21276944}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 6
\pages 885--896
\crossref{https://doi.org/10.1134/S0001434613110254}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329130000025}
\elib{https://elibrary.ru/item.asp?id=21904477}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891319311}
Linking options:
  • https://www.mathnet.ru/eng/mzm9303
  • https://doi.org/10.4213/mzm9303
  • https://www.mathnet.ru/eng/mzm/v94/i6/p857
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:743
    Full-text PDF :374
    References:97
    First page:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024