Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 5, Pages 684–701
DOI: https://doi.org/10.4213/mzm9293
(Mi mzm9293)
 

This article is cited in 26 scientific papers (total in 26 papers)

Modeling the Bursting Effect in Neuron Systems

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University
References:
Abstract: We propose a new method for modeling the well-known phenomenon of “bursting behavior” in neuron systems by invoking delay equations. Namely, we consider a singularly perturbed nonlinear difference-differential equation with two delays describing the functioning of an isolated neuron. Under a suitable choice of parameters, we establish the existence of a stable periodic motion with any prescribed number of spikes on a closed time interval equal to the period length.
Keywords: “bursting behavior” in neuron systems, difference-differential equation, relay equation, Cauchy problem, Schauder principle, relaxation cycle, spiking, stability.
Received: 01.12.2011
English version:
Mathematical Notes, 2013, Volume 93, Issue 5, Pages 676–690
DOI: https://doi.org/10.1134/S0001434613050040
Bibliographic databases:
Document Type: Article
UDC: 517.926
Language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Modeling the Bursting Effect in Neuron Systems”, Mat. Zametki, 93:5 (2013), 684–701; Math. Notes, 93:5 (2013), 676–690
Citation in format AMSBIB
\Bibitem{GlyKolRoz13}
\by S.~D.~Glyzin, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Modeling the Bursting Effect in Neuron Systems
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 5
\pages 684--701
\mathnet{http://mi.mathnet.ru/mzm9293}
\crossref{https://doi.org/10.4213/mzm9293}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206017}
\zmath{https://zbmath.org/?q=an:06198908}
\elib{https://elibrary.ru/item.asp?id=20731725}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 5
\pages 676--690
\crossref{https://doi.org/10.1134/S0001434613050040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321274300004}
\elib{https://elibrary.ru/item.asp?id=20438976}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879771579}
Linking options:
  • https://www.mathnet.ru/eng/mzm9293
  • https://doi.org/10.4213/mzm9293
  • https://www.mathnet.ru/eng/mzm/v93/i5/p684
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:564
    Full-text PDF :242
    References:83
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024