Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 5, Pages 665–683
DOI: https://doi.org/10.4213/mzm9284
(Mi mzm9284)
 

This article is cited in 22 scientific papers (total in 22 papers)

Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows

D. I. Borisovab, K. V. Pankrashinc

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
b Bashkir State Pedagogical University, Ufa
c Unit\'e mixte de recherche 8628, CNRS, University Paris-Sud 11, Orsay, France
References:
Abstract: As an example of two coupled waveguides, we construct a periodic second-order differential operator acting in a Euclidean domain and having spectral gaps whose edges are attained strictly inside the Brillouin zone. The waveguides are modeled by the Laplacian in two infinite strips of different width that have a common interior boundary. On this common boundary, we impose the Neumann boundary condition, but cut out a periodic system of small holes, while on the remaining exterior boundary we impose the Dirichlet boundary condition. It is shown that, by varying the widths of the strips and the distance between the holes, one can control the location of the extrema of the band functions as well as the number of the open gaps. We calculate the leading terms in the asymptotics for the gap lengths and the location of the extrema.
Keywords: Laplacian, periodic operator, waveguide, band spectrum, spectral gap, dispersion laws, matching of asymptotic expansions, boundary conditions.
Received: 02.02.2012
English version:
Mathematical Notes, 2013, Volume 93, Issue 5, Pages 660–675
DOI: https://doi.org/10.1134/S0001434613050039
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: D. I. Borisov, K. V. Pankrashin, “Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows”, Mat. Zametki, 93:5 (2013), 665–683; Math. Notes, 93:5 (2013), 660–675
Citation in format AMSBIB
\Bibitem{BorPan13}
\by D.~I.~Borisov, K.~V.~Pankrashin
\paper Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 5
\pages 665--683
\mathnet{http://mi.mathnet.ru/mzm9284}
\crossref{https://doi.org/10.4213/mzm9284}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206016}
\zmath{https://zbmath.org/?q=an:06198907}
\elib{https://elibrary.ru/item.asp?id=20731724}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 5
\pages 660--675
\crossref{https://doi.org/10.1134/S0001434613050039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321274300003}
\elib{https://elibrary.ru/item.asp?id=20429917}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878154357}
Linking options:
  • https://www.mathnet.ru/eng/mzm9284
  • https://doi.org/10.4213/mzm9284
  • https://www.mathnet.ru/eng/mzm/v93/i5/p665
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:585
    Full-text PDF :210
    References:100
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024