Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 1, Pages 94–108
DOI: https://doi.org/10.4213/mzm9256
(Mi mzm9256)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the Algebraic Independence of Values of Generalized Hypergeometric Functions

V. A. Gorelov

Moscow Power Engineering Institute (Technical University)
References:
Abstract: We consider hypergeometric functions satisfying homogeneous linear differential equations of arbitrary order. We prove general theorems on the algebraic independence of the solutions of a set of hypergeometric equations as well as of the values of these solutions at algebraic points. The conditions of most theorems are necessary and sufficient.
Keywords: generalized hypergeometric function, linear differential equation, algebraic independence of solutions, Galois group, differential field, transcendence degree, contiguous functions.
Received: 29.09.2011
Revised: 17.05.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 1, Pages 82–95
DOI: https://doi.org/10.1134/S0001434613070080
Bibliographic databases:
Document Type: Article
UDC: 511.36
Language: Russian
Citation: V. A. Gorelov, “On the Algebraic Independence of Values of Generalized Hypergeometric Functions”, Mat. Zametki, 94:1 (2013), 94–108; Math. Notes, 94:1 (2013), 82–95
Citation in format AMSBIB
\Bibitem{Gor13}
\by V.~A.~Gorelov
\paper On the Algebraic Independence of Values of Generalized Hypergeometric Functions
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 1
\pages 94--108
\mathnet{http://mi.mathnet.ru/mzm9256}
\crossref{https://doi.org/10.4213/mzm9256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1768419}
\zmath{https://zbmath.org/?q=an:06228531}
\elib{https://elibrary.ru/item.asp?id=20731760}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 1
\pages 82--95
\crossref{https://doi.org/10.1134/S0001434613070080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323665000008}
\elib{https://elibrary.ru/item.asp?id=20456156}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883411588}
Linking options:
  • https://www.mathnet.ru/eng/mzm9256
  • https://doi.org/10.4213/mzm9256
  • https://www.mathnet.ru/eng/mzm/v94/i1/p94
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :198
    References:81
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024