Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 2, Pages 209–215
DOI: https://doi.org/10.4213/mzm9203
(Mi mzm9203)
 

This article is cited in 7 scientific papers (total in 7 papers)

A Criterion for the Best Approximation of Constants by Simple Partial Fractions

M. A. Komarov

Vladimir State University
Full-text PDF (470 kB) Citations (7)
References:
Abstract: The problem of the best uniform approximation of a real constant $c$ by real-valued simple partial fractions $R_n$ on a closed interval of the real axis is considered. For sufficiently small (in absolute value) $c$, $|c|\leq c_n$, it is proved that $R_n$ is a fraction of best approximation if, for the difference $R_n-c$, there exists a Chebyshev alternance of $n+1$ points on a closed interval. A criterion for best approximation in terms of alternance is stated.
Keywords: best uniform approximation of a real constant, best approximation by simple partial fractions, Chebyshev alternance, interpolation.
Received: 04.07.2011
Revised: 09.11.2011
English version:
Mathematical Notes, 2013, Volume 93, Issue 2, Pages 250–256
DOI: https://doi.org/10.1134/S0001434613010276
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: M. A. Komarov, “A Criterion for the Best Approximation of Constants by Simple Partial Fractions”, Mat. Zametki, 93:2 (2013), 209–215; Math. Notes, 93:2 (2013), 250–256
Citation in format AMSBIB
\Bibitem{Kom13}
\by M.~A.~Komarov
\paper A Criterion for the Best Approximation of Constants by Simple Partial Fractions
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 2
\pages 209--215
\mathnet{http://mi.mathnet.ru/mzm9203}
\crossref{https://doi.org/10.4213/mzm9203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205962}
\zmath{https://zbmath.org/?q=an:06158182}
\elib{https://elibrary.ru/item.asp?id=20731676}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 2
\pages 250--256
\crossref{https://doi.org/10.1134/S0001434613010276}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900027}
\elib{https://elibrary.ru/item.asp?id=20431942}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874570641}
Linking options:
  • https://www.mathnet.ru/eng/mzm9203
  • https://doi.org/10.4213/mzm9203
  • https://www.mathnet.ru/eng/mzm/v93/i2/p209
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:592
    Full-text PDF :176
    References:84
    First page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024