Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 2, Pages 246–251
DOI: https://doi.org/10.4213/mzm9131
(Mi mzm9131)
 

This article is cited in 1 scientific paper (total in 1 paper)

Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives

G. G. Oniani

Akaki Tsereteli State University
Full-text PDF (453 kB) Citations (1)
References:
Abstract: Let $B_1,\dots,B_k$ be Busemann–Feller and regular differential bases composed of intervals of the corresponding dimensions. It is proved that if $B_1,\dots,B_k$ satisfy a certain condition (called the completeness condition), then, for their Cartesian product $B_1\times \dotsb\times B_k$, an analog of Besicovitch's theorem on the possible values of strong upper and lower derivatives is valid.
Keywords: Besicovitch's theorem on the values of upper and lower derivatives, Busemann–Feller basis, regular differentiation basis.
Received: 05.11.2010
Revised: 24.03.2011
English version:
Mathematical Notes, 2013, Volume 93, Issue 2, Pages 282–287
DOI: https://doi.org/10.1134/S0001434613010306
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: G. G. Oniani, “Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives”, Mat. Zametki, 93:2 (2013), 246–251; Math. Notes, 93:2 (2013), 282–287
Citation in format AMSBIB
\Bibitem{Oni13}
\by G.~G.~Oniani
\paper Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 2
\pages 246--251
\mathnet{http://mi.mathnet.ru/mzm9131}
\crossref{https://doi.org/10.4213/mzm9131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205970}
\zmath{https://zbmath.org/?q=an:1273.28002}
\elib{https://elibrary.ru/item.asp?id=20731679}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 2
\pages 282--287
\crossref{https://doi.org/10.1134/S0001434613010306}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874556651}
Linking options:
  • https://www.mathnet.ru/eng/mzm9131
  • https://doi.org/10.4213/mzm9131
  • https://www.mathnet.ru/eng/mzm/v93/i2/p246
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :177
    References:38
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024