Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 1, Pages 45–55
DOI: https://doi.org/10.4213/mzm9109
(Mi mzm9109)
 

Asymptotics of Series Arising from the Approximation of Periodic Functions by Riesz and Cesàro Means

V. P. Zastavnyi

Donetsk National University
References:
Abstract: Asymptotic expansions in powers of $\delta$ as $\delta\to+\infty$ of the series
$$ \sum_{k=0}^\infty(-1)^{(\beta+1)k}\frac{Q((\delta^\alpha-(ak+b)^\alpha)_+)}{(ak+b)^{r+1}}, $$
where $\beta\in\mathbb Z$, $\alpha,a,b>0$, and $r\in\mathbb C$, while $Q$ is an algebraic polynomial satisfying the condition $Q(0)=0$, are obtained. In special cases, these series arise from the approximation of periodic differentiable functions by the Riesz and Cesàro means.
Keywords: Riesz mean, Cesàro mean, periodic differentiable function, approximation of periodic functions, algebraic polynomial, Hurwitz function, Euler gamma function, Bernoulli spline, Euler spline, Bernoulli polynomial.
Received: 12.09.2010
English version:
Mathematical Notes, 2013, Volume 93, Issue 1, Pages 58–68
DOI: https://doi.org/10.1134/S0001434613010069
Bibliographic databases:
Document Type: Article
UDC: 517.518.83+517.15
Language: Russian
Citation: V. P. Zastavnyi, “Asymptotics of Series Arising from the Approximation of Periodic Functions by Riesz and Cesàro Means”, Mat. Zametki, 93:1 (2013), 45–55; Math. Notes, 93:1 (2013), 58–68
Citation in format AMSBIB
\Bibitem{Zas13}
\by V.~P.~Zastavnyi
\paper Asymptotics of Series Arising from the Approximation of Periodic Functions by Riesz and Ces\`aro Means
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 1
\pages 45--55
\mathnet{http://mi.mathnet.ru/mzm9109}
\crossref{https://doi.org/10.4213/mzm9109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205946}
\zmath{https://zbmath.org/?q=an:1268.41025}
\elib{https://elibrary.ru/item.asp?id=20731658}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 1
\pages 58--68
\crossref{https://doi.org/10.1134/S0001434613010069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874574199}
Linking options:
  • https://www.mathnet.ru/eng/mzm9109
  • https://doi.org/10.4213/mzm9109
  • https://www.mathnet.ru/eng/mzm/v93/i1/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:524
    Full-text PDF :128
    References:78
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024