Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 3, Pages 462–470
DOI: https://doi.org/10.4213/mzm9094
(Mi mzm9094)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Number of Components of Fixed Size in a Random $A$-Mapping

A. L. Yakymiv

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (497 kB) Citations (1)
References:
Abstract: Let $\mathfrak S_n$ be the semigroup of mappings of a set of $n$ elements into itself, let $A$ be a fixed subset of the set of natural numbers $\mathbb N$, and let $V_n(A)$ be the set of mappings from $\mathfrak S_n$ for which the sizes of the contours belong to the set $A$. Mappings from $V_n(A)$ are usually called $A$-mappings. Consider a random mapping $\sigma_n$ uniformly distributed on $V_n(A)$. It is assumed that the set $A$ possesses asymptotic density $\varrho$, including the case $\varrho=0$. Let $\xi_{in}$ be the number of connected components of a random mapping $\sigma_n$ of size $i\in\mathbb N$. For a fixed integer $b\in\mathbb N$, as $n\to\infty$, the asymptotic behavior of the joint distribution of random variables $\xi_{1n},\xi_{2n},\dots,\xi_{bn}$ is studied. It is shown that this distribution weakly converges to the joint distribution of independent Poisson random variables $\eta_1,\eta_2,\dots,\eta_b$ with some parameters $\lambda_i=\mathsf E\eta_{i}$, $i\in\mathbb N$.
Keywords: random $A$-mapping, Poisson random variable, asymptotic behavior of the joint distribution of random variables, regularly/slowly varying function in the sense of Karamata, Stirling's formula.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00318-a
This work was supported by the Russian Foundation for Basic Research (grant no. 14-01-00318-a).
Received: 11.06.2013
Revised: 27.10.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 3, Pages 468–475
DOI: https://doi.org/10.1134/S0001434615030177
Bibliographic databases:
Document Type: Article
UDC: 519.174
Language: Russian
Citation: A. L. Yakymiv, “On the Number of Components of Fixed Size in a Random $A$-Mapping”, Mat. Zametki, 97:3 (2015), 462–470; Math. Notes, 97:3 (2015), 468–475
Citation in format AMSBIB
\Bibitem{Yak15}
\by A.~L.~Yakymiv
\paper On the Number of Components of Fixed Size in a Random $A$-Mapping
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 3
\pages 462--470
\mathnet{http://mi.mathnet.ru/mzm9094}
\crossref{https://doi.org/10.4213/mzm9094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370533}
\zmath{https://zbmath.org/?q=an:06455280}
\elib{https://elibrary.ru/item.asp?id=23421535}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 3
\pages 468--475
\crossref{https://doi.org/10.1134/S0001434615030177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353566800017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928663683}
Linking options:
  • https://www.mathnet.ru/eng/mzm9094
  • https://doi.org/10.4213/mzm9094
  • https://www.mathnet.ru/eng/mzm/v97/i3/p462
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :155
    References:49
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024