|
This article is cited in 3 scientific papers (total in 3 papers)
Gigantic Component in Random Distance Graphs of Special Form
A. R. Yarmuhametov M. V. Lomonosov Moscow State University
Abstract:
We consider the problem of threshold probability for the existence of a gigantic component in a certain series of random distance graphs. The results obtained generalize the classical Erdős–Rényi theorems in the case of geometric graphs of special form.
Keywords:
random distance graph, gigantic component in a random graph, classical Erdős–Rényi theorems, $k$-vertex tree, Stirling's formula.
Received: 02.03.2011 Revised: 20.06.2011
Citation:
A. R. Yarmuhametov, “Gigantic Component in Random Distance Graphs of Special Form”, Mat. Zametki, 92:3 (2012), 463–480; Math. Notes, 92:3 (2012), 426–441
Linking options:
https://www.mathnet.ru/eng/mzm9066https://doi.org/10.4213/mzm9066 https://www.mathnet.ru/eng/mzm/v92/i3/p463
|
Statistics & downloads: |
Abstract page: | 594 | Full-text PDF : | 259 | References: | 70 | First page: | 16 |
|