Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 3, Pages 333–346
DOI: https://doi.org/10.4213/mzm9060
(Mi mzm9060)
 

Explicit Solutions of Boundary-Value Problems for $(2+1)$-Dimensional Integrable Systems

V. L. Vereshchagin

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: Two nonlinear integrable models with two space variables and one time variable, the Kadomtsev–Petviashvili equation and the two-dimensional Toda chain, are studied as well-posed boundary-value problems that can be solved by the inverse scattering method. It is shown that there exists a multitude of integrable boundary-value problems and, for these problems, various curves can be chosen as boundary contours; besides, the problems in question become problems with moving boundaries. A method for deriving explicit solutions of integrable boundary-value problems is described and its efficiency is illustrated by several examples. This allows us to interpret the integrability phenomenon of the boundary condition in the traditional sense, namely as a condition for the availability of wide classes of solutions that can be written in terms of well-known functions.
Keywords: Kadomtsev–Petviashvili equation, Toda chain, boundary-value problem, inverse scattering method, $(2+1)$-dimensional integrable systems, Lax representation, Gelfand–Levitan–Marchenko equation, dressing method, soliton solution.
Received: 17.01.2011
English version:
Mathematical Notes, 2013, Volume 93, Issue 3, Pages 360–372
DOI: https://doi.org/10.1134/S0001434613030024
Bibliographic databases:
Document Type: Article
UDC: 517.953
Language: Russian
Citation: V. L. Vereshchagin, “Explicit Solutions of Boundary-Value Problems for $(2+1)$-Dimensional Integrable Systems”, Mat. Zametki, 93:3 (2013), 333–346; Math. Notes, 93:3 (2013), 360–372
Citation in format AMSBIB
\Bibitem{Ver13}
\by V.~L.~Vereshchagin
\paper Explicit Solutions of Boundary-Value Problems for $(2+1)$-Dimensional Integrable Systems
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 3
\pages 333--346
\mathnet{http://mi.mathnet.ru/mzm9060}
\crossref{https://doi.org/10.4213/mzm9060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205981}
\elib{https://elibrary.ru/item.asp?id=20731691}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 3
\pages 360--372
\crossref{https://doi.org/10.1134/S0001434613030024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317986600002}
\elib{https://elibrary.ru/item.asp?id=20435518}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876442449}
Linking options:
  • https://www.mathnet.ru/eng/mzm9060
  • https://doi.org/10.4213/mzm9060
  • https://www.mathnet.ru/eng/mzm/v93/i3/p333
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :179
    References:70
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024