Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 91, Issue 6, Pages 908–919
DOI: https://doi.org/10.4213/mzm9041
(Mi mzm9041)
 

This article is cited in 1 scientific paper (total in 1 paper)

Inverse Problem for Equations of Mixed Type with Lavrentev–Bitsadze Operator

I. A. Khadzhi

Sterlitamak State Pedagogical Academy
Full-text PDF (482 kB) Citations (1)
References:
Abstract: For the equation of mixed elliptic-hyperbolic type
$$ u_{xx}+(\operatorname{sgn}y)u_{yy}-b^2u=f(x) $$
in a rectangular domain $D=\{(x,y)\mid 0<x<1,\,-\alpha<y<\beta\}$, where $\alpha$, $\beta$, and $b$ are given positive numbers, we study the problem with boundary conditions
\begin{gather*} u(0,y)=u(1,y)=0,\qquad-\alpha\le y\le \beta, \\ u(x,\beta)=\varphi(x),\quad u(x,-\alpha)=\psi(x),\quad u_y(x,-\alpha)=g(x),\qquad 0\le x\le 1. \end{gather*}
We establish a criterion for the uniqueness of the solution, which is constructed as the sum of the series in eigenfunctions of the corresponding eigenvalue problem and prove the stability of the solution.
Keywords: equation of mixed elliptic-hyperbolic type, inverse problem for partial differential equations, Lavrentev–Bitsadze operator, eigenvalue problem, stability of a solution, Weierstrass test for convergence, Cauchy–Bunyakovskii inequality.
Received: 22.05.2010
Revised: 06.04.2011
English version:
Mathematical Notes, 2012, Volume 91, Issue 6, Pages 857–867
DOI: https://doi.org/10.1134/S0001434612050331
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: I. A. Khadzhi, “Inverse Problem for Equations of Mixed Type with Lavrentev–Bitsadze Operator”, Mat. Zametki, 91:6 (2012), 908–919; Math. Notes, 91:6 (2012), 857–867
Citation in format AMSBIB
\Bibitem{Kha12}
\by I.~A.~Khadzhi
\paper Inverse Problem for Equations of Mixed Type with Lavrentev--Bitsadze Operator
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 6
\pages 908--919
\mathnet{http://mi.mathnet.ru/mzm9041}
\crossref{https://doi.org/10.4213/mzm9041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201529}
\elib{https://elibrary.ru/item.asp?id=20731557}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 6
\pages 857--867
\crossref{https://doi.org/10.1134/S0001434612050331}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305984400033}
\elib{https://elibrary.ru/item.asp?id=24952923}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864242993}
Linking options:
  • https://www.mathnet.ru/eng/mzm9041
  • https://doi.org/10.4213/mzm9041
  • https://www.mathnet.ru/eng/mzm/v91/i6/p908
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :138
    References:67
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024