Abstract:
The Dirichlet boundary-value problem for the eigenvalues of the Lamé operator in a two-dimensional bounded domain with a small hole is studied. The asymptotics of the eigenvalue of this boundary-value problem is constructed and justified up to the power of the parameter defining the diameter of the hole.
Citation:
D. B. Davletov, “Asymptotics of Eigenvalues of the Two-Dimensional Dirichlet Boundary-Value Problem for the Lamé Operator in a Domain with a Small Hole”, Mat. Zametki, 93:4 (2013), 537–548; Math. Notes, 93:4 (2013), 545–555
\Bibitem{Dav13}
\by D.~B.~Davletov
\paper Asymptotics of Eigenvalues of the Two-Dimensional Dirichlet Boundary-Value Problem for the Lam\'e Operator in a Domain with a Small Hole
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 4
\pages 537--548
\mathnet{http://mi.mathnet.ru/mzm9023}
\crossref{https://doi.org/10.4213/mzm9023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206001}
\zmath{https://zbmath.org/?q=an:06185230}
\elib{https://elibrary.ru/item.asp?id=20731710}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 4
\pages 545--555
\crossref{https://doi.org/10.1134/S000143461303022X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317986600022}
\elib{https://elibrary.ru/item.asp?id=20431463}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876422726}
Linking options:
https://www.mathnet.ru/eng/mzm9023
https://doi.org/10.4213/mzm9023
https://www.mathnet.ru/eng/mzm/v93/i4/p537
This publication is cited in the following 4 articles:
D. B. Davletov, O. B. Davletov, R. R. Davletova, A. A. Ershov, “O sobstvennykh elementakh dvumernoi kraevoi zadachi tipa Steklova dlya operatora Lame”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:1 (2023), 54–65
D. B. Davletov, O. B. Davletov, R. R. Davletova, A. A. Ershov, “Skhodimost sobstvennykh elementov kraevoi zadachi tipa Steklova dlya operatora Lame”, Tr. IMM UrO RAN, 27, no. 1, 2021, 37–47
D. B. Davletov, O. B. Davletov, “Convergence of eigenelements of a Steklov-type problem in a half-band with a small hole”, J. Math. Sci. (N. Y.), 241:5 (2019), 549–555
D. B. Davletov, D. V. Kozhevnikov, “The problem of Steklov type in a half-cylinder with a small cavity”, Ufa Math. J., 8:4 (2016), 62–87