Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 1, Pages 22–35
DOI: https://doi.org/10.4213/mzm9021
(Mi mzm9021)
 

This article is cited in 14 scientific papers (total in 14 papers)

Application of Lyapunov's Direct Method to the Study of the Stability of Solutions to Systems of Impulsive Differential Equations

A. I. Dvirnyjab, V. I. Slyn'koab

a Institute of Mechanics named after S. P. Timoshenko of National Academy of Sciences of Ukraine
b Hedmark University College, Norway
References:
Abstract: Classical theorems on the stability of the solutions of impulsive differential equations are further developed.
Keywords: impulsive differential equation, Lyapunov's direct method, Lyapunov (asymptotic) stability, Cauchy problem, equilibrium state stability, Hahn function class.
Received: 06.12.2010
Revised: 11.01.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 1, Pages 26–37
DOI: https://doi.org/10.1134/S0001434614070037
Bibliographic databases:
Document Type: Article
UDC: 517.929.21
Language: Russian
Citation: A. I. Dvirnyj, V. I. Slyn'ko, “Application of Lyapunov's Direct Method to the Study of the Stability of Solutions to Systems of Impulsive Differential Equations”, Mat. Zametki, 96:1 (2014), 22–35; Math. Notes, 96:1 (2014), 26–37
Citation in format AMSBIB
\Bibitem{DviSly14}
\by A.~I.~Dvirnyj, V.~I.~Slyn'ko
\paper Application of Lyapunov's Direct Method to the Study of the Stability of Solutions to Systems of Impulsive Differential Equations
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 1
\pages 22--35
\mathnet{http://mi.mathnet.ru/mzm9021}
\crossref{https://doi.org/10.4213/mzm9021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344271}
\zmath{https://zbmath.org/?q=an:06434960}
\elib{https://elibrary.ru/item.asp?id=21826523}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 1
\pages 26--37
\crossref{https://doi.org/10.1134/S0001434614070037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340938800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906510363}
Linking options:
  • https://www.mathnet.ru/eng/mzm9021
  • https://doi.org/10.4213/mzm9021
  • https://www.mathnet.ru/eng/mzm/v96/i1/p22
  • This publication is cited in the following 14 articles:
    1. Sergey Dashkovskiy, Vitalii Slynko, 2023 European Control Conference (ECC), 2023, 1  crossref
    2. Ivan Atamas, 2023 European Control Conference (ECC), 2023, 1  crossref
    3. Dashkovskiy S., Slynko V., “Stability Conditions For Impulsive Dynamical Systems”, Math. Control Signal Syst., 34:1 (2022), 95–128  crossref  mathscinet  isi
    4. Slynko I V., Tunc C., Erdur S., “Sufficient Conditions of Interval Stability of a Class of Linear Impulsive Systems With a Delay”, J. Comput. Syst. Sci. Int., 59:1 (2020), 8–18  crossref  mathscinet  isi
    5. V. N. Kolesnichenko, V. I. Slyn'ko, “On the Dynamic Stability of Impulsive Mechanical Systems with Delay”, J Math Sci, 246:3 (2020), 337  crossref
    6. V. I. Slyn'ko, O. Tunc, V. O. Bivziuk, “Application of commutator calculus to the study of linear impulsive systems”, Syst. Control Lett., 123 (2019), 160–165  crossref  mathscinet  zmath  isi  scopus
    7. S. V. Kravchuk, V. I. Slyn'ko, “Robust stability of linear periodic systems”, Autom. Remote Control, 80:12 (2019), 2108–2125  mathnet  crossref  crossref  isi  elib
    8. V. O. Bivziuk, V. I. Slyn'ko, “Sufficient conditions for the stability of linear periodic impulsive differential equations”, Sb. Math., 210:11 (2019), 1511–1530  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. V. Bivziuk, V. Slyn'ko, “Comparison principle for linear differential equations with periodic impulsive action”, 2019 57Th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Annual Allerton Conference on Communication Control and Computing, IEEE, 2019, 1023–1029  isi
    10. V. Slyn'ko, C. Tunc, “Stability of abstract linear switched impulsive differential equations”, Automatica, 107 (2019), 433–441  crossref  mathscinet  isi
    11. Vladyslav Bivziuk, Vitalii Slyn'ko, 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2019, 1023  crossref
    12. V. I. Slyn'ko, C. Tunc, “Global asymptotic stability of nonlinear periodic impulsive equations”, Miskolc Math. Notes, 19:1 (2018), 595–610  crossref  mathscinet  isi
    13. V. I. Slyn'ko, “The stability conditions of linear periodic systems of ordinary differential equations”, St. Petersburg Math. J., 30:5 (2019), 885–900  mathnet  crossref  isi  elib
    14. V. I. Slyn'ko, C. Tunç, “Sufficient conditions for stability of periodic linear impulsive delay systems”, Autom. Remote Control, 79:11 (2018), 1989–2004  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :210
    References:53
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025