Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 92, Issue 3, Pages 459–462
DOI: https://doi.org/10.4213/mzm9010
(Mi mzm9010)
 

This article is cited in 4 scientific papers (total in 4 papers)

New Characteristics of Infinitesimal Isometry and Ricci Solitons

S. E. Stepanov, I. G. Shandra

Financial University under the Government of the Russian Federation
Full-text PDF (409 kB) Citations (4)
References:
Abstract: We prove that a vector field $X$ on a compact Riemannian manifold $(M,g)$ with Levi-Cività connection $\nabla$ is an infinitesimal isometry if and only if it satisfies the system of differential equations: $\operatorname{trace}_g(L_X\nabla)=0$, $\operatorname{trace}_g(L_X\operatorname{Ric})=0$, where $L_X$ is the Lie derivative in the direction of $X$ and $\operatorname{Ric}$ is the Ricci tensor. It follows from the second assertion that the Ricci soliton on a compact manifold $M$ is trivial if its vector field $X$ satisfies one of the following two conditions: $\operatorname{trace}_g(L_X\operatorname{Ric})\le 0$ or $\operatorname{trace}_g(L_X \operatorname{Ric})\ge 0$.
Keywords: compact Riemannian manifold, infinitesimal isometry, Levi–Cività connection, vector field, Ricci soliton, Ricci tensor, local harmonic transformation.
Received: 28.03.2011
English version:
Mathematical Notes, 2012, Volume 92, Issue 3, Pages 422–425
DOI: https://doi.org/10.1134/S0001434612090155
Bibliographic databases:
Document Type: Article
UDC: 514.764.2
Language: Russian
Citation: S. E. Stepanov, I. G. Shandra, “New Characteristics of Infinitesimal Isometry and Ricci Solitons”, Mat. Zametki, 92:3 (2012), 459–462; Math. Notes, 92:3 (2012), 422–425
Citation in format AMSBIB
\Bibitem{SteSha12}
\by S.~E.~Stepanov, I.~G.~Shandra
\paper New Characteristics of Infinitesimal Isometry and Ricci Solitons
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 3
\pages 459--462
\mathnet{http://mi.mathnet.ru/mzm9010}
\crossref{https://doi.org/10.4213/mzm9010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201581}
\zmath{https://zbmath.org/?q=an:1261.53046}
\elib{https://elibrary.ru/item.asp?id=20731605}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 3
\pages 422--425
\crossref{https://doi.org/10.1134/S0001434612090155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310228200015}
\elib{https://elibrary.ru/item.asp?id=20497604}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867951499}
Linking options:
  • https://www.mathnet.ru/eng/mzm9010
  • https://doi.org/10.4213/mzm9010
  • https://www.mathnet.ru/eng/mzm/v92/i3/p459
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:548
    Full-text PDF :202
    References:63
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024