|
This article is cited in 4 scientific papers (total in 4 papers)
New Characteristics of Infinitesimal Isometry and Ricci Solitons
S. E. Stepanov, I. G. Shandra Financial University under the Government of the Russian Federation
Abstract:
We prove that a vector field $X$ on a compact Riemannian manifold $(M,g)$ with Levi-Cività connection $\nabla$ is an infinitesimal isometry if and only if it satisfies the system of differential equations: $\operatorname{trace}_g(L_X\nabla)=0$, $\operatorname{trace}_g(L_X\operatorname{Ric})=0$, where $L_X$ is the Lie derivative in the direction of $X$ and $\operatorname{Ric}$ is the Ricci tensor. It follows from the second assertion that the Ricci soliton on a compact manifold $M$ is trivial if its vector field $X$ satisfies one of the following two conditions: $\operatorname{trace}_g(L_X\operatorname{Ric})\le 0$ or $\operatorname{trace}_g(L_X \operatorname{Ric})\ge 0$.
Keywords:
compact Riemannian manifold, infinitesimal isometry, Levi–Cività connection, vector field, Ricci soliton, Ricci tensor, local harmonic transformation.
Received: 28.03.2011
Citation:
S. E. Stepanov, I. G. Shandra, “New Characteristics of Infinitesimal Isometry and Ricci Solitons”, Mat. Zametki, 92:3 (2012), 459–462; Math. Notes, 92:3 (2012), 422–425
Linking options:
https://www.mathnet.ru/eng/mzm9010https://doi.org/10.4213/mzm9010 https://www.mathnet.ru/eng/mzm/v92/i3/p459
|
Statistics & downloads: |
Abstract page: | 548 | Full-text PDF : | 202 | References: | 63 | First page: | 35 |
|