Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 4, Pages 614–623
DOI: https://doi.org/10.4213/mzm8985
(Mi mzm8985)
 

This article is cited in 1 scientific paper (total in 1 paper)

Cotorsion Dimensions and Hopf Algebra Actions

Xiuli Chen, Haiyan Zhu, Fang Li

Zhejiang University
Full-text PDF (470 kB) Citations (1)
References:
Abstract: Let $H$ be a finite-dimensional Hopf algebra over a field $k$, and let $A$ be an $H$-module algebra. In this paper, we discuss the cotorsion dimension of the smash product $A\mathbin{\#}H$. We prove that
$$ \mathrm{l.cot.D}(A\mathbin{\#}H) \leq \mathrm{l.cot.D}(A) + \mathrm{r.D}(H), $$
which generalizes the result of group rings. Moreover, we give some sufficient conditions for which
$$ \mathrm{l.cot.D}(A\mathbin{\#}H) =\mathrm{l.cot.D}(A). $$
As applications, we study the invariants of IF properties and Gorenstein global dimensions.
Keywords: Hopf algebra, cotorsion dimension, smash product, projective dimension, Gorenstein dimension.
Received: 08.09.2010
Revised: 06.01.2011
English version:
Mathematical Notes, 2013, Volume 93, Issue 4, Pages 616–623
DOI: https://doi.org/10.1134/S0001434613030309
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: Xiuli Chen, Haiyan Zhu, Fang Li, “Cotorsion Dimensions and Hopf Algebra Actions”, Mat. Zametki, 93:4 (2013), 614–623; Math. Notes, 93:4 (2013), 616–623
Citation in format AMSBIB
\Bibitem{XiuHaiFan13}
\by Xiuli Chen, Haiyan Zhu, Fang Li
\paper Cotorsion Dimensions and Hopf Algebra Actions
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 4
\pages 614--623
\mathnet{http://mi.mathnet.ru/mzm8985}
\crossref{https://doi.org/10.4213/mzm8985}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206009}
\zmath{https://zbmath.org/?q=an:06185238}
\elib{https://elibrary.ru/item.asp?id=20731717}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 4
\pages 616--623
\crossref{https://doi.org/10.1134/S0001434613030309}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317986600030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876435102}
Linking options:
  • https://www.mathnet.ru/eng/mzm8985
  • https://doi.org/10.4213/mzm8985
  • https://www.mathnet.ru/eng/mzm/v93/i4/p614
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025