|
This article is cited in 1 scientific paper (total in 1 paper)
Cotorsion Dimensions and Hopf Algebra Actions
Xiuli Chen, Haiyan Zhu, Fang Li Zhejiang University
Abstract:
Let $H$ be a finite-dimensional Hopf algebra over a field $k$, and let $A$ be an $H$-module algebra. In this paper, we discuss the cotorsion dimension of the smash product $A\mathbin{\#}H$. We prove that
$$
\mathrm{l.cot.D}(A\mathbin{\#}H) \leq \mathrm{l.cot.D}(A) + \mathrm{r.D}(H),
$$
which generalizes the result of group rings. Moreover, we give some sufficient conditions for which
$$
\mathrm{l.cot.D}(A\mathbin{\#}H) =\mathrm{l.cot.D}(A).
$$
As applications, we study the invariants of IF properties and Gorenstein global dimensions.
Keywords:
Hopf algebra, cotorsion dimension, smash product, projective dimension, Gorenstein dimension.
Received: 08.09.2010 Revised: 06.01.2011
Citation:
Xiuli Chen, Haiyan Zhu, Fang Li, “Cotorsion Dimensions and Hopf Algebra Actions”, Mat. Zametki, 93:4 (2013), 614–623; Math. Notes, 93:4 (2013), 616–623
Linking options:
https://www.mathnet.ru/eng/mzm8985https://doi.org/10.4213/mzm8985 https://www.mathnet.ru/eng/mzm/v93/i4/p614
|
|