Abstract:
A necessary and sufficient condition for the residual finiteness of a (generalized) free product of two residually finite solvable-by-finite minimax groups with cyclic amalgamated subgroups is obtained. This generalizes the well-known Dyer theorem claiming that every free product of two polycyclic-by-finite groups with cyclic amalgamated subgroups is a residually finite group.
Citation:
D. N. Azarov, “On the Residual Finiteness of Free Products of Solvable Minimax Groups with Cyclic Amalgamated Subgroups”, Mat. Zametki, 93:4 (2013), 483–491; Math. Notes, 93:4 (2013), 503–509
\Bibitem{Aza13}
\by D.~N.~Azarov
\paper On the Residual Finiteness of Free Products of Solvable Minimax Groups with Cyclic Amalgamated Subgroups
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 4
\pages 483--491
\mathnet{http://mi.mathnet.ru/mzm8971}
\crossref{https://doi.org/10.4213/mzm8971}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205997}
\zmath{https://zbmath.org/?q=an:1272.20030}
\elib{https://elibrary.ru/item.asp?id=20731706}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 4
\pages 503--509
\crossref{https://doi.org/10.1134/S0001434613030188}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317986600018}
\elib{https://elibrary.ru/item.asp?id=20437111}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876455022}
Linking options:
https://www.mathnet.ru/eng/mzm8971
https://doi.org/10.4213/mzm8971
https://www.mathnet.ru/eng/mzm/v93/i4/p483
This publication is cited in the following 5 articles:
E. V. Sokolov, “On the Separability of Abelian Subgroups of the Fundamental Groups of Graphs of Groups. II”, Sib Math J, 65:1 (2024), 174
E. V. Sokolov, “Ob otdelimosti abelevykh podgrupp fundamentalnykh grupp grafov grupp. II”, Sib. matem. zhurn., 65:1 (2024), 207–228
Evgeny Victorovich Sokolov, “On the separability of subgroups of nilpotent groups by root classes of groups”, Journal of Group Theory, 2023
D. N. Azarov, “On the weak π-potency of some groups and free products”, Siberian Math. J., 61:6 (2020), 953–962
D. N. Azarov, “O finitnoi approksimiruemosti obobschennykh svobodnykh proizvedenii grupp s tsiklicheskim ob'edineniem”, Chebyshevskii sb., 14:3 (2013), 9–19