Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 1, Pages 81–95
DOI: https://doi.org/10.4213/mzm8955
(Mi mzm8955)
 

This article is cited in 12 scientific papers (total in 12 papers)

On the Blow-Up of the Solution of an Equation Related to the Hamilton–Jacobi Equation

M. O. Korpusov

M. V. Lomonosov Moscow State University
References:
Abstract: A new model three-dimensional third-order equation of Hamilton–Jacobi type is derived. For this equation, the initial boundary-value problem in a bounded domain with smooth boundary is studied and local solvability in the strong generalized sense is proved; in addition, sufficient conditions for the blow-up in finite time and sufficient conditions for global (in time) solvability are obtained.
Keywords: third-order equation of Hamilton–Jacobi type, blow-up of solutions, electric potential in a crystalline semiconductor, Dirichlet problem, Galerkin approximation, Browder–Minty theorem, Lipschitz-continuous operator.
Received: 26.03.2012
Revised: 08.06.2012
English version:
Mathematical Notes, 2013, Volume 93, Issue 1, Pages 90–101
DOI: https://doi.org/10.1134/S0001434613010100
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: M. O. Korpusov, “On the Blow-Up of the Solution of an Equation Related to the Hamilton–Jacobi Equation”, Mat. Zametki, 93:1 (2013), 81–95; Math. Notes, 93:1 (2013), 90–101
Citation in format AMSBIB
\Bibitem{Kor13}
\by M.~O.~Korpusov
\paper On the Blow-Up of the Solution of an Equation Related to the Hamilton--Jacobi Equation
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 1
\pages 81--95
\mathnet{http://mi.mathnet.ru/mzm8955}
\crossref{https://doi.org/10.4213/mzm8955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205950}
\zmath{https://zbmath.org/?q=an:06158165}
\elib{https://elibrary.ru/item.asp?id=20731662}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 1
\pages 90--101
\crossref{https://doi.org/10.1134/S0001434613010100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900010}
\elib{https://elibrary.ru/item.asp?id=20431930}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874567209}
Linking options:
  • https://www.mathnet.ru/eng/mzm8955
  • https://doi.org/10.4213/mzm8955
  • https://www.mathnet.ru/eng/mzm/v93/i1/p81
  • This publication is cited in the following 12 articles:
    1. M. V. Artemeva, M. O. Korpusov, A. A. Panin, “On the solvability of the Cauchy problem for a thermal–electrical model”, Theoret. and Math. Phys., 222:2 (2025), 183–197  mathnet  crossref  crossref  adsnasa
    2. M. V. Artemeva, M. O. Korpusov, “On the Existence of a Nonextendable Solution of the Cauchy problem for a $(1+1)$-Dimensional Thermal-Electrical Model”, Math. Notes, 115:5 (2024), 653–663  mathnet  crossref  crossref  mathscinet
    3. M. V. Artemeva, M. O. Korpusov, “On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model”, Theoret. and Math. Phys., 219:2 (2024), 748–760  mathnet  crossref  crossref  mathscinet  adsnasa
    4. A. A. Kon'kov, A. E. Shishkov, “On global solutions of second-order quasilinear elliptic inequalities”, Math. Notes, 116:5 (2024), 1014–1019  mathnet  crossref  crossref
    5. M. V Artemeva, M. O Korpusov, “THE CAUCHY PROBLEM FOR AN NONLINEAR WAVE EQUATION”, Differencialʹnye uravneniâ, 60:10 (2024), 1299  crossref
    6. M. V. Artemeva, M. O. Korpusov, “On the existence of a nonextendable solution of the Cauchy problem for a $(3+1)$-dimensional thermal–electrical model”, Theoret. and Math. Phys., 221:3 (2024), 2207–2218  mathnet  crossref  crossref  adsnasa
    7. M. V. Artemeva, M. O. Korpusov, “The Cauchy Problem for a Nonlinear Wave Equation”, Diff Equat, 60:10 (2024), 1369  crossref
    8. M. O. Korpusov, A. Yu. Perlov, A. V. Tymoshenko, R. S. Shafir, “Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity”, Theoret. and Math. Phys., 217:2 (2023), 1743–1754  mathnet  crossref  crossref  mathscinet  adsnasa
    9. M. O. Korpusov, A. Yu. Perlov, A. V. Tymoshenko, R. S. Shafir, “On the Blow-Up of the Solution of a Nonlinear System of Equations of a Thermal-Electrical Model”, Math. Notes, 114:5 (2023), 850–861  mathnet  crossref  crossref  mathscinet
    10. Ivan E. Egorov, Sergey V. Popov, PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2172, PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 030008  crossref
    11. B. Ahmad, A. Alsaedi, M. Kirane, “Nonexistence results for the Cauchy problem of time fractional nonlinear systems of thermo-elasticity”, Math. Meth. Appl. Sci., 40:12 (2017), 4272–4279  crossref  mathscinet  zmath  isi
    12. M. Boutefnouchet, H. Erjaee, M. Kirane, M. Qafsaoui, “Nonexistence results for the Cauchy problem for some fractional nonlinear systems of thermo-elasticity type”, ZAMM-Z. Angew. Math. Mech., 96:9 (2016), 1119–1128  crossref  mathscinet  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:627
    Full-text PDF :245
    References:79
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025