Abstract:
A new model three-dimensional third-order equation of Hamilton–Jacobi type is derived. For this equation, the initial boundary-value problem in a bounded domain with smooth boundary is studied and local solvability in the strong generalized sense is proved; in addition, sufficient conditions for the blow-up in finite time and sufficient conditions for global (in time) solvability are obtained.
Keywords:
third-order equation of Hamilton–Jacobi type, blow-up of solutions, electric potential in a crystalline semiconductor, Dirichlet problem, Galerkin approximation, Browder–Minty theorem, Lipschitz-continuous operator.
Citation:
M. O. Korpusov, “On the Blow-Up of the Solution of an Equation Related to the Hamilton–Jacobi Equation”, Mat. Zametki, 93:1 (2013), 81–95; Math. Notes, 93:1 (2013), 90–101
\Bibitem{Kor13}
\by M.~O.~Korpusov
\paper On the Blow-Up of the Solution of an Equation Related to the Hamilton--Jacobi Equation
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 1
\pages 81--95
\mathnet{http://mi.mathnet.ru/mzm8955}
\crossref{https://doi.org/10.4213/mzm8955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205950}
\zmath{https://zbmath.org/?q=an:06158165}
\elib{https://elibrary.ru/item.asp?id=20731662}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 1
\pages 90--101
\crossref{https://doi.org/10.1134/S0001434613010100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900010}
\elib{https://elibrary.ru/item.asp?id=20431930}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874567209}
Linking options:
https://www.mathnet.ru/eng/mzm8955
https://doi.org/10.4213/mzm8955
https://www.mathnet.ru/eng/mzm/v93/i1/p81
This publication is cited in the following 12 articles:
M. V. Artemeva, M. O. Korpusov, A. A. Panin, “On the solvability of the Cauchy problem for a thermal–electrical model”, Theoret. and Math. Phys., 222:2 (2025), 183–197
M. V. Artemeva, M. O. Korpusov, “On the Existence of a Nonextendable Solution of the Cauchy problem for a $(1+1)$-Dimensional Thermal-Electrical Model”, Math. Notes, 115:5 (2024), 653–663
M. V. Artemeva, M. O. Korpusov, “On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model”, Theoret. and Math. Phys., 219:2 (2024), 748–760
A. A. Kon'kov, A. E. Shishkov, “On global solutions of second-order quasilinear elliptic inequalities”, Math. Notes, 116:5 (2024), 1014–1019
M. V Artemeva, M. O Korpusov, “THE CAUCHY PROBLEM FOR AN NONLINEAR WAVE EQUATION”, Differencialʹnye uravneniâ, 60:10 (2024), 1299
M. V. Artemeva, M. O. Korpusov, “On the existence of a nonextendable solution of the Cauchy problem for a $(3+1)$-dimensional thermal–electrical model”, Theoret. and Math. Phys., 221:3 (2024), 2207–2218
M. V. Artemeva, M. O. Korpusov, “The Cauchy Problem for a Nonlinear Wave
Equation”, Diff Equat, 60:10 (2024), 1369
M. O. Korpusov, A. Yu. Perlov, A. V. Tymoshenko, R. S. Shafir, “Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity”, Theoret. and Math. Phys., 217:2 (2023), 1743–1754
M. O. Korpusov, A. Yu. Perlov, A. V. Tymoshenko, R. S. Shafir, “On the Blow-Up of the Solution of a Nonlinear System of Equations of a Thermal-Electrical Model”, Math. Notes, 114:5 (2023), 850–861
Ivan E. Egorov, Sergey V. Popov, PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2172, PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 030008
B. Ahmad, A. Alsaedi, M. Kirane, “Nonexistence results for the Cauchy problem of time fractional nonlinear systems of thermo-elasticity”, Math. Meth. Appl. Sci., 40:12 (2017), 4272–4279
M. Boutefnouchet, H. Erjaee, M. Kirane, M. Qafsaoui, “Nonexistence results for the Cauchy problem for some fractional nonlinear systems of thermo-elasticity type”, ZAMM-Z. Angew. Math. Mech., 96:9 (2016), 1119–1128