Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 1, Pages 81–95
DOI: https://doi.org/10.4213/mzm8955
(Mi mzm8955)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the Blow-Up of the Solution of an Equation Related to the Hamilton–Jacobi Equation

M. O. Korpusov

M. V. Lomonosov Moscow State University
Full-text PDF (532 kB) Citations (9)
References:
Abstract: A new model three-dimensional third-order equation of Hamilton–Jacobi type is derived. For this equation, the initial boundary-value problem in a bounded domain with smooth boundary is studied and local solvability in the strong generalized sense is proved; in addition, sufficient conditions for the blow-up in finite time and sufficient conditions for global (in time) solvability are obtained.
Keywords: third-order equation of Hamilton–Jacobi type, blow-up of solutions, electric potential in a crystalline semiconductor, Dirichlet problem, Galerkin approximation, Browder–Minty theorem, Lipschitz-continuous operator.
Received: 26.03.2012
Revised: 08.06.2012
English version:
Mathematical Notes, 2013, Volume 93, Issue 1, Pages 90–101
DOI: https://doi.org/10.1134/S0001434613010100
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: M. O. Korpusov, “On the Blow-Up of the Solution of an Equation Related to the Hamilton–Jacobi Equation”, Mat. Zametki, 93:1 (2013), 81–95; Math. Notes, 93:1 (2013), 90–101
Citation in format AMSBIB
\Bibitem{Kor13}
\by M.~O.~Korpusov
\paper On the Blow-Up of the Solution of an Equation Related to the Hamilton--Jacobi Equation
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 1
\pages 81--95
\mathnet{http://mi.mathnet.ru/mzm8955}
\crossref{https://doi.org/10.4213/mzm8955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205950}
\zmath{https://zbmath.org/?q=an:06158165}
\elib{https://elibrary.ru/item.asp?id=20731662}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 1
\pages 90--101
\crossref{https://doi.org/10.1134/S0001434613010100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900010}
\elib{https://elibrary.ru/item.asp?id=20431930}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874567209}
Linking options:
  • https://www.mathnet.ru/eng/mzm8955
  • https://doi.org/10.4213/mzm8955
  • https://www.mathnet.ru/eng/mzm/v93/i1/p81
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:580
    Full-text PDF :224
    References:67
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024