Keywords:
discrete norm of a polynomial, uniform grid, uniform norm on a set, Schwartz lemma, conformal mapping, analytic continuation, maximum principle.
Citation:
V. N. Dubinin, “Lower Bound for the Discrete Norm of a Polynomial on the Circle”, Mat. Zametki, 90:2 (2011), 306–309; Math. Notes, 90:2 (2011), 284–287
\Bibitem{Dub11}
\by V.~N.~Dubinin
\paper Lower Bound for the Discrete Norm of a Polynomial on the Circle
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 2
\pages 306--309
\mathnet{http://mi.mathnet.ru/mzm8942}
\crossref{https://doi.org/10.4213/mzm8942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2918446}
\zmath{https://zbmath.org/?q=an:06014008}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 2
\pages 284--287
\crossref{https://doi.org/10.1134/S0001434611070285}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294363500028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052049068}
Linking options:
https://www.mathnet.ru/eng/mzm8942
https://doi.org/10.4213/mzm8942
https://www.mathnet.ru/eng/mzm/v90/i2/p306
This publication is cited in the following 5 articles:
Michael I. Ganzburg, “Discretization Theorems for Entire Functions of Exponential Type”, Journal of Mathematical Analysis and Applications, 2025, 129510
Guruswami V., Zuckerman D., “Robust Fourier and Polynomial Curve Fitting”, 2016 IEEE 57Th Annual Symposium on Foundations of Computer Science (Focs), Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2016, 751–759
V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684
S. I. Kalmykov, “Comparison of discrete and uniform norms of polynomials on a segment and a circle arc”, J. Math. Sci. (N. Y.), 193:1 (2013), 100–105
Fournier R., Ruscheweyh S., Salinas C. L., “On a discrete norm for polynomials”, J. Math. Anal. Appl., 396:2 (2012), 425–433