Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 6, Pages 938–941
DOI: https://doi.org/10.4213/mzm8918
(Mi mzm8918)
 

This article is cited in 5 scientific papers (total in 5 papers)

Brief Communications

Unimodular Systems of Vectors are Embeddable in the (0,1)-Cube

V. P. Grishukhin, V. I. Danilov, G. A. Koshevoy

Central Economics and Mathematics Institute, RAS
Full-text PDF (271 kB) Citations (5)
References:
Keywords: unimodular system of vectors, dicing, (0,1)-cube.
Received: 12.01.2010
English version:
Mathematical Notes, 2010, Volume 88, Issue 6, Pages 891–893
DOI: https://doi.org/10.1134/S0001434610110301
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. P. Grishukhin, V. I. Danilov, G. A. Koshevoy, “Unimodular Systems of Vectors are Embeddable in the (0,1)-Cube”, Mat. Zametki, 88:6 (2010), 938–941; Math. Notes, 88:6 (2010), 891–893
Citation in format AMSBIB
\Bibitem{GriDanKos10}
\by V.~P.~Grishukhin, V.~I.~Danilov, G.~A.~Koshevoy
\paper Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 6
\pages 938--941
\mathnet{http://mi.mathnet.ru/mzm8918}
\crossref{https://doi.org/10.4213/mzm8918}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2868417}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 6
\pages 891--893
\crossref{https://doi.org/10.1134/S0001434610110301}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288489700030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651228177}
Linking options:
  • https://www.mathnet.ru/eng/mzm8918
  • https://doi.org/10.4213/mzm8918
  • https://www.mathnet.ru/eng/mzm/v88/i6/p938
  • This publication is cited in the following 5 articles:
    1. Marzena Rostek, Nathan Yoder, “Complementarity in Matching Markets and Exchange Economies”, Games and Economic Behavior, 2025  crossref
    2. Marzena J. Rostek, Nathan Yoder, “Complementarity in Matching, Games, and Exchange Economies”, SSRN Journal, 2020  crossref
    3. Baldwin E., Klemperer P., “Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities”, Econometrica, 87:3 (2019), 867–932  crossref  mathscinet  isi
    4. Elizabeth Baldwin, Paul Klemperer, “Understanding Preferences: 'Demand Types', and The Existence of Equilibrium with Indivisibilities”, SSRN Journal, 2015  crossref
    5. V. P. Grishukhin, “The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice E7”, Sb. Math., 203:11 (2012), 1571–1588  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :248
    References:71
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025