|
Finiteness of Graded Generalized Local Cohomology Modules
A. Mafi, H. Saremi
Abstract:
We consider two finitely generated graded modules over a homogeneous Noetherian ring $R=\bigoplus_{n\in\mathbb{N}_0}R_n$ with a local base ring $(R_0,\mathfrak{m}_0)$ and irrelevant ideal $R_{+}$ of $R$. We study the generalized local cohomology modules $H_\mathfrak{b}^i(M,N)$ with respect to the ideal $\mathfrak{b}=\mathfrak{b}_0+{R}_+$, where $\mathfrak{b}_0$ is an ideal of $R_0$. We prove that if $\operatorname{dim} R_0/\mathfrak{b}_0\le 1$, then the following cases hold: for all $i\ge 0$, the $R$-module $H_\mathfrak{b}^i(M,N)/{\mathfrak{a}_0H_\mathfrak{b}^i(M,N)}$ is Artinian, where $\sqrt{\mathfrak{a}_0+\mathfrak{b}_0}=\mathfrak{m}_0$; for all $i\ge 0$, the set $\operatorname{Ass}_{R_0}(H_\mathfrak{b}^i(M,N)_n)$ is asymptotically stable as $n\to{-\infty}$. Moreover, if $H_{\mathfrak{b}}^j(M,N)_n$ is a finitely generated $R_0$-module for all $n\le n_0$ and all $j<i$, where $n_0\in\mathbb{Z}$ and $i\in\mathbb{N}_0$, then for all $n\le n_0$, the set $\operatorname{Ass}_{R_0}(H_{\mathfrak{b}}^i(M,N)_n)$ is finite.
Keywords:
local cohomology modules, generalized local cohomology modules, graded modules, Noetherian ring.
Received: 04.06.2010
Citation:
A. Mafi, H. Saremi, “Finiteness of Graded Generalized Local Cohomology Modules”, Mat. Zametki, 94:5 (2013), 689–694; Math. Notes, 94:5 (2013), 642–646
Linking options:
https://www.mathnet.ru/eng/mzm8908https://doi.org/10.4213/mzm8908 https://www.mathnet.ru/eng/mzm/v94/i5/p689
|
Statistics & downloads: |
Abstract page: | 285 | Full-text PDF : | 150 | References: | 50 | First page: | 16 |
|