Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 5, Pages 689–694
DOI: https://doi.org/10.4213/mzm8908
(Mi mzm8908)
 

Finiteness of Graded Generalized Local Cohomology Modules

A. Mafi, H. Saremi
References:
Abstract: We consider two finitely generated graded modules over a homogeneous Noetherian ring $R=\bigoplus_{n\in\mathbb{N}_0}R_n$ with a local base ring $(R_0,\mathfrak{m}_0)$ and irrelevant ideal $R_{+}$ of $R$. We study the generalized local cohomology modules $H_\mathfrak{b}^i(M,N)$ with respect to the ideal $\mathfrak{b}=\mathfrak{b}_0+{R}_+$, where $\mathfrak{b}_0$ is an ideal of $R_0$. We prove that if $\operatorname{dim} R_0/\mathfrak{b}_0\le 1$, then the following cases hold: for all $i\ge 0$, the $R$-module $H_\mathfrak{b}^i(M,N)/{\mathfrak{a}_0H_\mathfrak{b}^i(M,N)}$ is Artinian, where $\sqrt{\mathfrak{a}_0+\mathfrak{b}_0}=\mathfrak{m}_0$; for all $i\ge 0$, the set $\operatorname{Ass}_{R_0}(H_\mathfrak{b}^i(M,N)_n)$ is asymptotically stable as $n\to{-\infty}$. Moreover, if $H_{\mathfrak{b}}^j(M,N)_n$ is a finitely generated $R_0$-module for all $n\le n_0$ and all $j<i$, where $n_0\in\mathbb{Z}$ and $i\in\mathbb{N}_0$, then for all $n\le n_0$, the set $\operatorname{Ass}_{R_0}(H_{\mathfrak{b}}^i(M,N)_n)$ is finite.
Keywords: local cohomology modules, generalized local cohomology modules, graded modules, Noetherian ring.
Received: 04.06.2010
English version:
Mathematical Notes, 2013, Volume 94, Issue 5, Pages 642–646
DOI: https://doi.org/10.1134/S0001434613110059
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: A. Mafi, H. Saremi, “Finiteness of Graded Generalized Local Cohomology Modules”, Mat. Zametki, 94:5 (2013), 689–694; Math. Notes, 94:5 (2013), 642–646
Citation in format AMSBIB
\Bibitem{MafSar13}
\by A.~Mafi, H.~Saremi
\paper Finiteness of Graded Generalized Local Cohomology Modules
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 5
\pages 689--694
\mathnet{http://mi.mathnet.ru/mzm8908}
\crossref{https://doi.org/10.4213/mzm8908}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3227010}
\zmath{https://zbmath.org/?q=an:1288.13012}
\elib{https://elibrary.ru/item.asp?id=20731814}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 5
\pages 642--646
\crossref{https://doi.org/10.1134/S0001434613110059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329130000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891303315}
Linking options:
  • https://www.mathnet.ru/eng/mzm8908
  • https://doi.org/10.4213/mzm8908
  • https://www.mathnet.ru/eng/mzm/v94/i5/p689
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :152
    References:53
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024