Abstract:
Special classes of solutions of the Cauchy problem for a hyperbolic equation are introduced and local extremum principles for the cases of positive and negative values of the parameter of the equation are established.
Citation:
V. M. Dolgopolov, I. N. Rodionova, “Extremal Properties of Solutions of Special Classes of a Hyperbolic-Type Equation”, Mat. Zametki, 92:4 (2012), 533–540; Math. Notes, 92:4 (2012), 490–496
\Bibitem{DolRod12}
\by V.~M.~Dolgopolov, I.~N.~Rodionova
\paper Extremal Properties of Solutions of Special Classes of a Hyperbolic-Type Equation
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 4
\pages 533--540
\mathnet{http://mi.mathnet.ru/mzm8900}
\crossref{https://doi.org/10.4213/mzm8900}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201587}
\zmath{https://zbmath.org/?q=an:1262.35148}
\elib{https://elibrary.ru/item.asp?id=20731611}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 4
\pages 490--496
\crossref{https://doi.org/10.1134/S0001434612090210}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310228200021}
\elib{https://elibrary.ru/item.asp?id=20497525}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867921444}
Linking options:
https://www.mathnet.ru/eng/mzm8900
https://doi.org/10.4213/mzm8900
https://www.mathnet.ru/eng/mzm/v92/i4/p533
This publication is cited in the following 3 articles:
M. V. Dolgopolov, I. N. Rodionova, “O postanovke vidoizmenennykh zadach dlya uravneniya Eilera–Darbu v sluchae parametrov, ravnykh po modulyu $\dfrac{1}{2}$”, Sovremennye problemy matematiki i fiziki, SMFN, 65, no. 1, Rossiiskii universitet druzhby narodov, M., 2019, 11–20
M. V. Dolgopolov, I. N. Rodionova, V. M. Dolgopolov, “Ob odnoi nelokalnoi zadache dlya uravneniya Eilera–Darbu”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 20:2 (2016), 259–275
I. N. Rodionova, V. M. Dolgopolov, “Analog zadachi $\Delta_1$ dlya giperbolicheskogo uravneniya vtorogo poryadka v trekhmernom evklidovom prostranstve”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:4 (2015), 697–709