Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 4, Pages 509–529
DOI: https://doi.org/10.4213/mzm8896
(Mi mzm8896)
 

Chain Rule for Conic Derivatives

I. Vodova

Silesian University in Opava
References:
Abstract: For all “nice” definitions of differentiability, the Chain Rule should be valid. We show that the Chain Rule remains true for some wide class of definitions of differentiability if one considers as approximative mappings (derivatives) not just continuous linear, but positively homogeneous mappings satisfying certain topological conditions (which are fulfilled for continuous linear mappings). For brevity, we call such derivatives conic. We will give corollaries for the case of conic differentiation of mappings between normed spaces, especially for the case of Fréchet conic differentiation and compact conic differentiation.
Keywords: chain rule, filter, pseudotopology, conic differentiability, FB-differentiability, Fréchet differentiability, MB-differentiability, compact differentiability.
Received: 20.08.2010
Revised: 07.05.2012
English version:
Mathematical Notes, 2013, Volume 93, Issue 4, Pages 523–538
DOI: https://doi.org/10.1134/S0001434613030206
Bibliographic databases:
Document Type: Article
UDC: 517.2+517.98
Language: Russian
Citation: I. Vodova, “Chain Rule for Conic Derivatives”, Mat. Zametki, 93:4 (2013), 509–529; Math. Notes, 93:4 (2013), 523–538
Citation in format AMSBIB
\Bibitem{Vod13}
\by I.~Vodova
\paper Chain Rule for Conic Derivatives
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 4
\pages 509--529
\mathnet{http://mi.mathnet.ru/mzm8896}
\crossref{https://doi.org/10.4213/mzm8896}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205999}
\zmath{https://zbmath.org/?q=an:06185228}
\elib{https://elibrary.ru/item.asp?id=20731708}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 4
\pages 523--538
\crossref{https://doi.org/10.1134/S0001434613030206}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317986600020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876448286}
Linking options:
  • https://www.mathnet.ru/eng/mzm8896
  • https://doi.org/10.4213/mzm8896
  • https://www.mathnet.ru/eng/mzm/v93/i4/p509
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025