Abstract:
Order-sharp estimates of the best orthogonal trigonometric approximations of the Nikolskii–Besov classes Brp,θBrp,θ of periodic functions of several variables in the space LqLq are obtained. Also the orders of the best approximations of functions of 2d2d variables of the form g(x,y)=f(x−y)g(x,y)=f(x−y), x,y∈Td=∏dj=1[−π,π], f(x)∈Brp,θ, by linear combinations of products of functions of d variables are established.
Keywords:
best trigonometric approximation of functions, best bilinear approximation of functions, Nikolskii–Besov class of periodic functions, the space Lq, Fourier sum, Vallée-Poussin kernel, Minkowski inequality.
Citation:
A. S. Romanyuk, “Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables”, Mat. Zametki, 94:3 (2013), 401–415; Math. Notes, 94:3 (2013), 379–391
\Bibitem{Rom13}
\by A.~S.~Romanyuk
\paper Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 3
\pages 401--415
\mathnet{http://mi.mathnet.ru/mzm8892}
\crossref{https://doi.org/10.4213/mzm8892}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206102}
\zmath{https://zbmath.org/?q=an:1286.42008}
\elib{https://elibrary.ru/item.asp?id=20731788}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 3
\pages 379--391
\crossref{https://doi.org/10.1134/S0001434613090095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326052400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886464787}
Linking options:
https://www.mathnet.ru/eng/mzm8892
https://doi.org/10.4213/mzm8892
https://www.mathnet.ru/eng/mzm/v94/i3/p401
This publication is cited in the following 8 articles:
Myron I. Grom'yak, Olha Ya. Radchenko, Sergii Ya. Yanchenko, “Approximation of functions of many variables from the generalized Nikol'skii–Besov classes in the uniform and integral metrics”, J Math Sci, 284:3 (2024), 329
Myron I. Grom'yak, Olha Ya. Radchenko, Sergii Ya. Yanchenko, “Approximation of functions of many variables from the generalized Nikol'skii-Besov classes in the uniform and integral metrics”, UMB, 21:2 (2024), 185
G. A. Akishev, “O poryadkakh n-chlennykh priblizhenii funktsii mnogikh peremennykh v prostranstve Lorentsa”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 227, VINITI RAN, M., 2023, 3–19
Svitlana B. Hembars'ka, Ihor A. Romanyuk, Oksana V. Fedunyk-Yaremchuk, “Characteristics of the linear and nonlinear approximations of the Nikol'skii–Besov-type classes of periodic functions of several variables”, J Math Sci, 274:3 (2023), 307
Svitlana Hembars'ka, Ihor Romanyuk, Oksana Fedunyk-Yaremchuk, “Characteristics of the linear and nonlinear approximations of the Nikol'skii-Besov-type classes of periodic functions of several variables”, UMB, 20:2 (2023), 161
K. A. Bekmaganbetov, K. E. Kervenev, Y. Toleugazy, “Estimate for the Order of Orthoprojection Width of the Nikol'skii–Besov Class in the Metric of Anisotropic Lorentz Spaces”, J Math Sci, 264:5 (2022), 552
A. S. Romanyuk, V. S. Romanyuk, “Estimation of the best linear approximations for the classes Brp,θ and singular numbers of the integral operators”, Ukr. Math. J., 68:9 (2017), 1424–1436
K. A. Bekmaganbetov, Ye. Toleugazy, “Order of the orthoprojection widths of the anisotropic Nikol'skii–Besov classes in the anisotropic Lorentz space”, Eurasian Math. J., 7:3 (2016), 8–16