Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 3, Pages 401–415
DOI: https://doi.org/10.4213/mzm8892
(Mi mzm8892)
 

This article is cited in 8 scientific papers (total in 8 papers)

Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables

A. S. Romanyuk

Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev
Full-text PDF (518 kB) Citations (8)
References:
Abstract: Order-sharp estimates of the best orthogonal trigonometric approximations of the Nikolskii–Besov classes Brp,θBrp,θ of periodic functions of several variables in the space LqLq are obtained. Also the orders of the best approximations of functions of 2d2d variables of the form g(x,y)=f(xy)g(x,y)=f(xy), x,yTd=dj=1[π,π], f(x)Brp,θ, by linear combinations of products of functions of d variables are established.
Keywords: best trigonometric approximation of functions, best bilinear approximation of functions, Nikolskii–Besov class of periodic functions, the space Lq, Fourier sum, Vallée-Poussin kernel, Minkowski inequality.
Received: 13.07.2010
Revised: 05.07.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 3, Pages 379–391
DOI: https://doi.org/10.1134/S0001434613090095
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: A. S. Romanyuk, “Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables”, Mat. Zametki, 94:3 (2013), 401–415; Math. Notes, 94:3 (2013), 379–391
Citation in format AMSBIB
\Bibitem{Rom13}
\by A.~S.~Romanyuk
\paper Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 3
\pages 401--415
\mathnet{http://mi.mathnet.ru/mzm8892}
\crossref{https://doi.org/10.4213/mzm8892}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206102}
\zmath{https://zbmath.org/?q=an:1286.42008}
\elib{https://elibrary.ru/item.asp?id=20731788}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 3
\pages 379--391
\crossref{https://doi.org/10.1134/S0001434613090095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326052400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886464787}
Linking options:
  • https://www.mathnet.ru/eng/mzm8892
  • https://doi.org/10.4213/mzm8892
  • https://www.mathnet.ru/eng/mzm/v94/i3/p401
  • This publication is cited in the following 8 articles:
    1. Myron I. Grom'yak, Olha Ya. Radchenko, Sergii Ya. Yanchenko, “Approximation of functions of many variables from the generalized Nikol'skii–Besov classes in the uniform and integral metrics”, J Math Sci, 284:3 (2024), 329  crossref
    2. Myron I. Grom'yak, Olha Ya. Radchenko, Sergii Ya. Yanchenko, “Approximation of functions of many variables from the generalized Nikol'skii-Besov classes in the uniform and integral metrics”, UMB, 21:2 (2024), 185  crossref
    3. G. A. Akishev, “O poryadkakh n-chlennykh priblizhenii funktsii mnogikh peremennykh v prostranstve Lorentsa”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 227, VINITI RAN, M., 2023, 3–19  mathnet  crossref
    4. Svitlana B. Hembars'ka, Ihor A. Romanyuk, Oksana V. Fedunyk-Yaremchuk, “Characteristics of the linear and nonlinear approximations of the Nikol'skii–Besov-type classes of periodic functions of several variables”, J Math Sci, 274:3 (2023), 307  crossref
    5. Svitlana Hembars'ka, Ihor Romanyuk, Oksana Fedunyk-Yaremchuk, “Characteristics of the linear and nonlinear approximations of the Nikol'skii-Besov-type classes of periodic functions of several variables”, UMB, 20:2 (2023), 161  crossref
    6. K. A. Bekmaganbetov, K. E. Kervenev, Y. Toleugazy, “Estimate for the Order of Orthoprojection Width of the Nikol'skii–Besov Class in the Metric of Anisotropic Lorentz Spaces”, J Math Sci, 264:5 (2022), 552  crossref
    7. A. S. Romanyuk, V. S. Romanyuk, “Estimation of the best linear approximations for the classes Brp,θ and singular numbers of the integral operators”, Ukr. Math. J., 68:9 (2017), 1424–1436  crossref  isi  scopus
    8. K. A. Bekmaganbetov, Ye. Toleugazy, “Order of the orthoprojection widths of the anisotropic Nikol'skii–Besov classes in the anisotropic Lorentz space”, Eurasian Math. J., 7:3 (2016), 8–16  mathnet  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:890
    Full-text PDF :421
    References:175
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025