|
This article is cited in 1 scientific paper (total in 1 paper)
On the Ranks of Idempotent Matrices over Skew Semifields
S. N. Il'in Kazan (Volga Region) Federal University
Abstract:
As is well known, every positive idempotent matrix is of rank 1. It is proved that idempotent matrices without zeros have this property over many skew semifields, and all these skew semifields are described.
Keywords:
idempotent matrix, rank, skew semifield, (weakly) additively idempotent skew semifield, (weakly) additively cancellable skew semifield.
Received: 27.05.2010 Revised: 19.03.2011
Citation:
S. N. Il'in, “On the Ranks of Idempotent Matrices over Skew Semifields”, Mat. Zametki, 91:6 (2012), 832–839; Math. Notes, 91:6 (2012), 782–788
Linking options:
https://www.mathnet.ru/eng/mzm8884https://doi.org/10.4213/mzm8884 https://www.mathnet.ru/eng/mzm/v91/i6/p832
|
Statistics & downloads: |
Abstract page: | 433 | Full-text PDF : | 190 | References: | 58 | First page: | 95 |
|