Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 90, Issue 1, Pages 53–69
DOI: https://doi.org/10.4213/mzm8879
(Mi mzm8879)
 

This article is cited in 12 scientific papers (total in 12 papers)

Homogenization of Monotone Operators Under Conditions of Coercitivity and Growth of Variable Order

V. V. Zhikova, S. E. Pastukhovab

a Vladimir State Humanitarian University
b Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: We obtain a homogenization procedure for the Dirichlet boundary-value problem for an elliptic equation of monotone type in the domain $\Omega\subset\mathbb R^d$. The operator of the problem satisfies the conditions of coercitivity and of growth with variable order $p_\varepsilon(x)=p(x/\varepsilon)$; furthermore, $p(y)$ is periodic, measurable, and satisfies the estimate $1<\alpha\le p(y)\le\beta<\infty$, while the parameter $\varepsilon>0$ tends to zero. Here $\alpha$ and $\beta$ are arbitrary constants. Taking Lavrentev's phenomenon into account, we consider solutions of two types: $H$- and $W$-solutions. Each of the solution types calls for a distinct homogenization procedure. Its justification is carried out by using the corresponding version of the lemma on compensated compactness, which is proved in the paper.
Keywords: homogenization of monotone operators, Dirichlet boundary-value problem, elliptic equation, coercitivity condition, compensated compactness, Sobolev–Orlicz space.
Received: 26.07.2010
English version:
Mathematical Notes, 2011, Volume 90, Issue 1, Pages 48–63
DOI: https://doi.org/10.1134/S0001434611070078
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: V. V. Zhikov, S. E. Pastukhova, “Homogenization of Monotone Operators Under Conditions of Coercitivity and Growth of Variable Order”, Mat. Zametki, 90:1 (2011), 53–69; Math. Notes, 90:1 (2011), 48–63
Citation in format AMSBIB
\Bibitem{ZhiPas11}
\by V.~V.~Zhikov, S.~E.~Pastukhova
\paper Homogenization of Monotone Operators Under Conditions of Coercitivity and Growth of Variable Order
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 1
\pages 53--69
\mathnet{http://mi.mathnet.ru/mzm8879}
\crossref{https://doi.org/10.4213/mzm8879}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2908169}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 1
\pages 48--63
\crossref{https://doi.org/10.1134/S0001434611070078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294363500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052055414}
Linking options:
  • https://www.mathnet.ru/eng/mzm8879
  • https://doi.org/10.4213/mzm8879
  • https://www.mathnet.ru/eng/mzm/v90/i1/p53
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1246
    Full-text PDF :274
    References:90
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024