Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 4, Pages 635–639
DOI: https://doi.org/10.4213/mzm8856
(Mi mzm8856)
 

The Mellin Transform of Hardy's Function is Entire

M. Jutila

University of Turku, Finland
References:
Abstract: We prove that an appropriately modified Mellin transform of the Hardy function $Z(x)$ is an entire function. The proof is based on the fact that the function $(2^{1-s}-1)\zeta(s)$ is entire.
Keywords: zeta function, Mellin transform, Hardy's function, holomorphic function, entire function, analytic continuation.
Received: 02.01.2010
English version:
Mathematical Notes, 2010, Volume 88, Issue 4, Pages 612–616
DOI: https://doi.org/10.1134/S0001434610090348
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: M. Jutila, “The Mellin Transform of Hardy's Function is Entire”, Mat. Zametki, 88:4 (2010), 635–639; Math. Notes, 88:4 (2010), 612–616
Citation in format AMSBIB
\Bibitem{Jut10}
\by M.~Jutila
\paper The Mellin Transform of Hardy's Function is Entire
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 4
\pages 635--639
\mathnet{http://mi.mathnet.ru/mzm8856}
\crossref{https://doi.org/10.4213/mzm8856}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2883185}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 4
\pages 612--616
\crossref{https://doi.org/10.1134/S0001434610090348}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284073100034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78249283207}
Linking options:
  • https://www.mathnet.ru/eng/mzm8856
  • https://doi.org/10.4213/mzm8856
  • https://www.mathnet.ru/eng/mzm/v88/i4/p635
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024