Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 4, Pages 485–501
DOI: https://doi.org/10.4213/mzm8848
(Mi mzm8848)
 

This article is cited in 1 scientific paper (total in 1 paper)

Benford's Law and Distribution Functions of Sequences in $(0,1)$

V. Baláža, K. Nagasakab, O. Strauchc

a Slovak University of Technology, Bratislava, Slovakia
b Hosei University, Tokyo, Japan
c Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia
Full-text PDF (591 kB) Citations (1)
References:
Abstract: Applying the theory of distribution functions of sequences $x_n\in[0,1]$, $n=1,2,\dots$, we find a functional equation for distribution functions of a sequence $x_n$ and show that the satisfaction of this functional equation for a sequence $x_n$ is equivalent to the fact that the sequence $x_n$ to satisfies the strong Benford law. Examples of distribution functions of sequences satisfying the functional equation are given with an application to the strong Benford law in different bases. Several direct consequences from uniform distribution theory are shown for the strong Benford law.
Keywords: distribution function of a sequence, Benford's law, density of occurrence of digits.
Received: 15.12.2009
English version:
Mathematical Notes, 2010, Volume 88, Issue 4, Pages 449–463
DOI: https://doi.org/10.1134/S0001434610090178
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: V. Baláž, K. Nagasaka, O. Strauch, “Benford's Law and Distribution Functions of Sequences in $(0,1)$”, Mat. Zametki, 88:4 (2010), 485–501; Math. Notes, 88:4 (2010), 449–463
Citation in format AMSBIB
\Bibitem{BalNagStr10}
\by V.~Bal\'a{\v z}, K.~Nagasaka, O.~Strauch
\paper Benford's Law and Distribution Functions of Sequences in $(0,1)$
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 4
\pages 485--501
\mathnet{http://mi.mathnet.ru/mzm8848}
\crossref{https://doi.org/10.4213/mzm8848}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2882211}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 4
\pages 449--463
\crossref{https://doi.org/10.1134/S0001434610090178}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284073100017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78249285914}
Linking options:
  • https://www.mathnet.ru/eng/mzm8848
  • https://doi.org/10.4213/mzm8848
  • https://www.mathnet.ru/eng/mzm/v88/i4/p485
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:536
    Full-text PDF :273
    References:56
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024