Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 91, Issue 4, Pages 530–538
DOI: https://doi.org/10.4213/mzm8834
(Mi mzm8834)
 

This article is cited in 1 scientific paper (total in 1 paper)

Reconstruction of Tetrahedra from Sets of Edge Lengths

N. O. Ermilov

Institute of Systems Analysis, Russian Academy of Sciences
Full-text PDF (386 kB) Citations (1)
References:
Abstract: The problem of reconstructing tetrahedra from given sets of edge lengths is studied. This is a special case of the problem of determining, up to isometry, the position of a complete graph in $\mathbb R^3$ from the set of all pairwise distances between its vertices without knowing their distribution over the edges of the graph. This problem arises in the physics of molecular clusters. Traditionally, the problem of minimizing the potential energy of a molecular cluster is reduced to a computationally complex global optimization problem. However, analyzing the solution thus obtained requires the knowledge of whether the congruence of multiedge constructions is preserved under rearrangements of edge lengths.
Keywords: tetrahedron, set of edge lengths, congruence of tetrahedra, circumscribed sphere.
Received: 11.06.2010
Revised: 16.10.2010
English version:
Mathematical Notes, 2012, Volume 91, Issue 4, Pages 500–507
DOI: https://doi.org/10.1134/S0001434612030248
Bibliographic databases:
Document Type: Article
UDC: 519.17:5+514.113.4
Language: Russian
Citation: N. O. Ermilov, “Reconstruction of Tetrahedra from Sets of Edge Lengths”, Mat. Zametki, 91:4 (2012), 530–538; Math. Notes, 91:4 (2012), 500–507
Citation in format AMSBIB
\Bibitem{Erm12}
\by N.~O.~Ermilov
\paper Reconstruction of Tetrahedra from Sets of Edge Lengths
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 4
\pages 530--538
\mathnet{http://mi.mathnet.ru/mzm8834}
\crossref{https://doi.org/10.4213/mzm8834}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201453}
\elib{https://elibrary.ru/item.asp?id=20731513}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 4
\pages 500--507
\crossref{https://doi.org/10.1134/S0001434612030248}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303478900024}
\elib{https://elibrary.ru/item.asp?id=17983921}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860369347}
Linking options:
  • https://www.mathnet.ru/eng/mzm8834
  • https://doi.org/10.4213/mzm8834
  • https://www.mathnet.ru/eng/mzm/v91/i4/p530
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :248
    References:47
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024