Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 90, Issue 5, Pages 764–775
DOI: https://doi.org/10.4213/mzm8821
(Mi mzm8821)
 

This article is cited in 32 scientific papers (total in 32 papers)

Best Polynomial Approximations in $L_2$ of Classes of $2\pi$-Periodic Functions and Exact Values of Their Widths

M. Sh. Shabozova, G. A. Yusupovb

a Institute of Mathematics, Academy of Sciences of Republic of Tajikistan
b Tajik National University, Dushanbe
References:
Abstract: We consider the problem of determining sharp inequalities between the best approximations of periodic differentiable functions by trigonometric polynomials and moduli of continuity of $m$th order in the space $L_2$ as well as present their applications. For some classes of functions defined by these moduli of continuity, we calculate the exact values of $n$-widths in $L_2$.
Keywords: best polynomial approximation, periodic differentiable function, trigonometric polynomial, modulus of continuity, the space $L_2$, $n$-width, Fourier series.
Received: 22.02.2010
Revised: 29.09.2010
English version:
Mathematical Notes, 2011, Volume 90, Issue 5, Pages 748–757
DOI: https://doi.org/10.1134/S0001434611110125
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, G. A. Yusupov, “Best Polynomial Approximations in $L_2$ of Classes of $2\pi$-Periodic Functions and Exact Values of Their Widths”, Mat. Zametki, 90:5 (2011), 764–775; Math. Notes, 90:5 (2011), 748–757
Citation in format AMSBIB
\Bibitem{ShaYus11}
\by M.~Sh.~Shabozov, G.~A.~Yusupov
\paper Best Polynomial Approximations in~$L_2$ of Classes of $2\pi$-Periodic Functions and Exact Values of Their Widths
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 5
\pages 764--775
\mathnet{http://mi.mathnet.ru/mzm8821}
\crossref{https://doi.org/10.4213/mzm8821}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962565}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 5
\pages 748--757
\crossref{https://doi.org/10.1134/S0001434611110125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298659000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855176869}
Linking options:
  • https://www.mathnet.ru/eng/mzm8821
  • https://doi.org/10.4213/mzm8821
  • https://www.mathnet.ru/eng/mzm/v90/i5/p764
  • This publication is cited in the following 32 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :232
    References:87
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024