Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 3, Pages 405–414
DOI: https://doi.org/10.4213/mzm8813
(Mi mzm8813)
 

On a Version of the Hua Problem

A. Kirkoryan, D. I. Tolev

Sofia University St. Kliment Ohridski
References:
Abstract: We prove that almost all natural numbers $n$ satisfying the congruence $n\equiv3\pmod{24}$, $n\not\equiv0\pmod5$, can be expressed as the sum of three squares of primes, at least one of which can be written as $1+x^2+y^2$.
Keywords: prime number, Hua problem, natural number, multiplicative function, Euler function, Cauchy inequality, Dirichlet $L$-series.
Received: 24.11.2009
English version:
Mathematical Notes, 2010, Volume 88, Issue 3, Pages 365–373
DOI: https://doi.org/10.1134/S0001434610090099
Bibliographic databases:
Document Type: Article
UDC: 511.333
Language: Russian
Citation: A. Kirkoryan, D. I. Tolev, “On a Version of the Hua Problem”, Mat. Zametki, 88:3 (2010), 405–414; Math. Notes, 88:3 (2010), 365–373
Citation in format AMSBIB
\Bibitem{KirTol10}
\by A.~Kirkoryan, D.~I.~Tolev
\paper On a Version of the Hua Problem
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 3
\pages 405--414
\mathnet{http://mi.mathnet.ru/mzm8813}
\crossref{https://doi.org/10.4213/mzm8813}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2882180}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 3
\pages 365--373
\crossref{https://doi.org/10.1134/S0001434610090099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284073100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78249246339}
Linking options:
  • https://www.mathnet.ru/eng/mzm8813
  • https://doi.org/10.4213/mzm8813
  • https://www.mathnet.ru/eng/mzm/v88/i3/p405
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024