Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 2, Pages 229–248
DOI: https://doi.org/10.4213/mzm8803
(Mi mzm8803)
 

This article is cited in 16 scientific papers (total in 16 papers)

Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential

A. I. Esinaa, A. I. Shafarevichbc

a Moscow Institute of Physics and Technology
b M. V. Lomonosov Moscow State University
c A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
References:
Abstract: We describe the asymptotics of the spectrum of the operator
$$ \widehat H\biggl(x,-\imath h\frac{\partial}{\partial x}\biggr)=-h^2\frac{\partial^2}{\partial x^2}+\imath(\cos x+\cos2x) $$
as $h\to0$ and show that the spectrum concentrates near some graph on the complex plane. We obtain equations for the eigenvalues, which are conditions on the periods of a holomorphic form on the corresponding Riemannian surface.
Keywords: Schrödinger operator, semiclassical spectrum of an operator, Riemannian surface, quantization condition, holomorphic form, Stokes line, monodromy matrix, turning point.
Received: 25.11.2009
English version:
Mathematical Notes, 2010, Volume 88, Issue 2, Pages 209–227
DOI: https://doi.org/10.1134/S0001434610070205
Bibliographic databases:
Document Type: Article
UDC: 517.984.55+514.84
Language: Russian
Citation: A. I. Esina, A. I. Shafarevich, “Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential”, Mat. Zametki, 88:2 (2010), 229–248; Math. Notes, 88:2 (2010), 209–227
Citation in format AMSBIB
\Bibitem{EsiSha10}
\by A.~I.~Esina, A.~I.~Shafarevich
\paper Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schr\"odinger Operator with Complex Potential
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 2
\pages 229--248
\mathnet{http://mi.mathnet.ru/mzm8803}
\crossref{https://doi.org/10.4213/mzm8803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2867051}
\elib{https://elibrary.ru/item.asp?id=15319841}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 2
\pages 209--227
\crossref{https://doi.org/10.1134/S0001434610070205}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284088200020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956490304}
Linking options:
  • https://www.mathnet.ru/eng/mzm8803
  • https://doi.org/10.4213/mzm8803
  • https://www.mathnet.ru/eng/mzm/v88/i2/p229
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024