Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 1, Pages 105–115
DOI: https://doi.org/10.4213/mzm8798
(Mi mzm8798)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the Existence of a Point Subset with Three or Five Interior Points

Xianglin Weia, Wenhua Lanb, Ren Dingb

a Hebei University of Science and Technology
b Hebei Polytechnic University
Full-text PDF (583 kB) Citations (2)
References:
Abstract: An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer $k\ge1$, let $h(k)$ be the smallest integer such that every point set in the plane, no three collinear, with at least $h(k)$ interior points, has a subset with $k$ or $k+2$ interior points of $P$. We prove that $h(3)=8$.
Keywords: finite planar point set, interior point.
Received: 30.06.2010
Revised: 30.12.2007
English version:
Mathematical Notes, 2010, Volume 88, Issue 1, Pages 103–111
DOI: https://doi.org/10.1134/S0001434610070102
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: Xianglin Wei, Wenhua Lan, Ren Ding, “On the Existence of a Point Subset with Three or Five Interior Points”, Mat. Zametki, 88:1 (2010), 105–115; Math. Notes, 88:1 (2010), 103–111
Citation in format AMSBIB
\Bibitem{WeiWenDin10}
\by Xianglin Wei, Wenhua Lan, Ren Ding
\paper On the Existence of a Point Subset with Three or Five Interior Points
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 1
\pages 105--115
\mathnet{http://mi.mathnet.ru/mzm8798}
\crossref{https://doi.org/10.4213/mzm8798}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2882167}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 1
\pages 103--111
\crossref{https://doi.org/10.1134/S0001434610070102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284088200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956456763}
Linking options:
  • https://www.mathnet.ru/eng/mzm8798
  • https://doi.org/10.4213/mzm8798
  • https://www.mathnet.ru/eng/mzm/v88/i1/p105
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024