Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 91, Issue 2, Pages 172–183
DOI: https://doi.org/10.4213/mzm8791
(Mi mzm8791)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space

Yu. V. Babenkoa, D. Skorokhodovb

a Kennesaw State University, USA
b Dnepropetrovsk National University
Full-text PDF (506 kB) Citations (1)
References:
Abstract: For any $t\in [0,1]$, we obtain the exact value of the modulus of continuity
$$ \omega_N(D_t,\delta):=\sup\{|x'(t)|:\|x\|_{L_{\infty}[0,1]}\le \delta,\, \|x''\|_{L_{N}^*[0,1]}\le 1\}, $$
where $L_N^*$ is the dual Orlicz space with Luxemburg norm and $D_t$ is the operator of differentition at the point $t$. As an application, we state necessary and sufficient conditions in the Kolmogorov problem for three numbers. Also we solve the Stechkin problem, i.e., the problem of approximating an unbounded operator of differentition $D_t$ by bounded linear operators for the class of functions $x$ such that $\|x''\|_{L_{N}^*[0,1]}\le 1$.
Keywords: Kolmogorov problem for three numbers, Stechkin problem, Orlicz space, Luxemburg norm, operator of differentition, Banach space, modulus of continuity.
Received: 10.12.2009
Revised: 27.02.2010
English version:
Mathematical Notes, 2012, Volume 91, Issue 2, Pages 161–171
DOI: https://doi.org/10.1134/S000143461201018X
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: Yu. V. Babenko, D. Skorokhodov, “The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space”, Mat. Zametki, 91:2 (2012), 172–183; Math. Notes, 91:2 (2012), 161–171
Citation in format AMSBIB
\Bibitem{BabSko12}
\by Yu.~V.~Babenko, D.~Skorokhodov
\paper The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 2
\pages 172--183
\mathnet{http://mi.mathnet.ru/mzm8791}
\crossref{https://doi.org/10.4213/mzm8791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201406}
\elib{https://elibrary.ru/item.asp?id=20731475}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 2
\pages 161--171
\crossref{https://doi.org/10.1134/S000143461201018X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303478400018}
\elib{https://elibrary.ru/item.asp?id=17977507}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857529768}
Linking options:
  • https://www.mathnet.ru/eng/mzm8791
  • https://doi.org/10.4213/mzm8791
  • https://www.mathnet.ru/eng/mzm/v91/i2/p172
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:515
    Full-text PDF :165
    References:51
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024