Abstract:
We describe an analog of the Cauchy–Kovalevskaya sufficient conditions for the analytic solvability of the Cauchy problem for systems of operator-differential equations of arbitrary order in locally convex spaces; this analog is stated in terms of the order and type of the linear operator.
Keywords:
Cauchy problem, operator-differential equation, Cauchy–Kovalevskaya sufficient conditions, locally convex space, linear operator, polycylinder, multiple power series, Cauchy–Hadamard formula.
Citation:
N. A. Aksenov, “The Cauchy Problem for Certain Systems of Operator-Differential Equations of Arbitrary Order in Locally Convex Spaces”, Mat. Zametki, 90:2 (2011), 183–198; Math. Notes, 90:2 (2011), 175–188
\Bibitem{Aks11}
\by N.~A.~Aksenov
\paper The Cauchy Problem for Certain Systems of Operator-Differential Equations of Arbitrary Order in Locally Convex Spaces
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 2
\pages 183--198
\mathnet{http://mi.mathnet.ru/mzm8788}
\crossref{https://doi.org/10.4213/mzm8788}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2918436}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 2
\pages 175--188
\crossref{https://doi.org/10.1134/S0001434611070182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294363500018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052051551}
Linking options:
https://www.mathnet.ru/eng/mzm8788
https://doi.org/10.4213/mzm8788
https://www.mathnet.ru/eng/mzm/v90/i2/p183
This publication is cited in the following 2 articles:
Umarov S., “Pseudo-Differential Operators With Meromorphic Symbols and Systems of Complex Differential Equations”, Complex Var. Elliptic Equ., 60:6 (2015), 829–863
Aksënov N.A., “Analiticheskaya razreshimost kompleksnoi zadachi Koshi dlya nekotorykh sistem differentsialno-operatornykh uravnenii s peremennymi koeffitsientami”, Uchenye zapiski Orlovskogo gosudarstvennogo universiteta. Seriya: Estestvennye, tekhnicheskie i meditsinskie nauki, 2013, no. 6, 25–32