Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 6, Pages 808–824
DOI: https://doi.org/10.4213/mzm8779
(Mi mzm8779)
 

This article is cited in 13 scientific papers (total in 13 papers)

Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics $3$ and $2$

S. Bouarroudja, A. V. Lebedevb, F. Vagemannc

a United Arab Emirates University
b N. I. Lobachevski State University of Nizhni Novgorod
c Université de Nantes, France
References:
Abstract: All finite-dimensional simple modular Lie algebras with Cartan matrix fail to have deformations, even infinitesimal ones, if the characteristic $p$ of the ground field is equal to $0$ or exceeds $3$. If $p=3$, then the orthogonal Lie algebra $\mathfrak o(5)$ is one of two simple modular Lie algebras with Cartan matrix that do have deformations (the Brown algebras $\mathfrak{br}(2;\alpha)$ appear in this family of deformations of the $10$-dimensional Lie algebras, and therefore are not listed separately); moreover, the $29$-dimensional Brown algebra $\mathfrak{br}(3)$ is the only other simple Lie algebra which has a Cartan matrix and admits a deformation. Kostrikin and Kuznetsov described the orbits (isomorphism classes) under the action of an algebraic group $O(5)$ of automorphisms of the Lie algebra $\mathfrak o(5)$ on the space $H^2(\mathfrak o(5);\mathfrak o(5))$ of infinitesimal deformations and presented representatives of the isomorphism classes. We give here an explicit description of the global deformations of the Lie algebra $\mathfrak o(5)$ and describe the deformations of a simple analog of this orthogonal algebra in characteristic $2$. In characteristic $3$, we have found the representatives of the isomorphism classes of the deformed algebras that linearly depend on the parameter.
Keywords: finite-dimensional simple modular Lie algebra, Brown algebra, infinitesimal deformation, global deformation, Cartan matrix, Jacobi identity, Massey bracket, Maurer–Cartan equation, Chevalley basis.
Received: 14.03.2010
Revised: 26.05.2010
English version:
Mathematical Notes, 2011, Volume 89, Issue 6, Pages 777–791
DOI: https://doi.org/10.1134/S0001434611050191
Bibliographic databases:
Document Type: Article
UDC: 512.544.3
Language: Russian
Citation: S. Bouarroudj, A. V. Lebedev, F. Vagemann, “Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics $3$ and $2$”, Mat. Zametki, 89:6 (2011), 808–824; Math. Notes, 89:6 (2011), 777–791
Citation in format AMSBIB
\Bibitem{BouLebVag11}
\by S.~Bouarroudj, A.~V.~Lebedev, F.~Vagemann
\paper Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 6
\pages 808--824
\mathnet{http://mi.mathnet.ru/mzm8779}
\crossref{https://doi.org/10.4213/mzm8779}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2908138}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 6
\pages 777--791
\crossref{https://doi.org/10.1134/S0001434611050191}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292216000019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959647002}
Linking options:
  • https://www.mathnet.ru/eng/mzm8779
  • https://doi.org/10.4213/mzm8779
  • https://www.mathnet.ru/eng/mzm/v89/i6/p808
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :156
    References:64
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024