Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 5, Pages 745–756
DOI: https://doi.org/10.4213/mzm8778
(Mi mzm8778)
 

This article is cited in 10 scientific papers (total in 10 papers)

Absolute Convergence of Fourier Series of Almost-Periodic Functions

Yu. Kh. Khasanov

Russian-Tajik Slavonic University
References:
Abstract: We present necessary and sufficient conditions for the absolute convergence of the Fourier series of almost-periodic (in the sense of Besicovitch) functions when the Fourier exponents have limit points at infinity or at zero. The structural properties of the functions are described by the modulus of continuity or the modulus of averaging of high order, depending on the behavior of the Fourier exponents. The case of uniform almost-periodic functions of bounded variation is considered.
Keywords: almost-periodic function, Fourier series, trigonometric polynomial, function of bounded variation, modulus of continuity, Parseval's inequality.
Received: 17.03.2010
Revised: 05.12.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 5, Pages 692–702
DOI: https://doi.org/10.1134/S0001434613110102
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: Yu. Kh. Khasanov, “Absolute Convergence of Fourier Series of Almost-Periodic Functions”, Mat. Zametki, 94:5 (2013), 745–756; Math. Notes, 94:5 (2013), 692–702
Citation in format AMSBIB
\Bibitem{Kha13}
\by Yu.~Kh.~Khasanov
\paper Absolute Convergence of Fourier Series of Almost-Periodic Functions
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 5
\pages 745--756
\mathnet{http://mi.mathnet.ru/mzm8778}
\crossref{https://doi.org/10.4213/mzm8778}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3227015}
\zmath{https://zbmath.org/?q=an:1285.42006}
\elib{https://elibrary.ru/item.asp?id=20731819}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 5
\pages 692--702
\crossref{https://doi.org/10.1134/S0001434613110102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329130000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891311394}
Linking options:
  • https://www.mathnet.ru/eng/mzm8778
  • https://doi.org/10.4213/mzm8778
  • https://www.mathnet.ru/eng/mzm/v94/i5/p745
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :196
    References:48
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024