Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 6, Pages 856–867
DOI: https://doi.org/10.4213/mzm8767
(Mi mzm8767)
 

This article is cited in 41 scientific papers (total in 41 papers)

Well-Posed Problems for the Laplace Operator in a Punctured Disk

B. E. Kanguzhina, A. A. Anijarovb

a Al-Farabi Kazakh National University
b Semipalatinsk State Pedagogical Institute
References:
Abstract: We give a complete description of well-posed solvable boundary-value problems for the Laplace operator in the disk and in the punctured disk. We present formulas for resolvents of well-posed problems for the Laplace operator in the disk.
Keywords: Laplace operator, well-posed solvable boundary-value problem, punctured disk, nonhomogeneous Laplace equation, Dirichlet boundary condition, Green function, Dirac function.
Received: 03.01.2010
Revised: 01.09.2010
English version:
Mathematical Notes, 2011, Volume 89, Issue 6, Pages 819–829
DOI: https://doi.org/10.1134/S0001434611050233
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: B. E. Kanguzhin, A. A. Anijarov, “Well-Posed Problems for the Laplace Operator in a Punctured Disk”, Mat. Zametki, 89:6 (2011), 856–867; Math. Notes, 89:6 (2011), 819–829
Citation in format AMSBIB
\Bibitem{KanAni11}
\by B.~E.~Kanguzhin, A.~A.~Anijarov
\paper Well-Posed Problems for the Laplace Operator in a Punctured Disk
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 6
\pages 856--867
\mathnet{http://mi.mathnet.ru/mzm8767}
\crossref{https://doi.org/10.4213/mzm8767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2908142}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 6
\pages 819--829
\crossref{https://doi.org/10.1134/S0001434611050233}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292216000023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959658834}
Linking options:
  • https://www.mathnet.ru/eng/mzm8767
  • https://doi.org/10.4213/mzm8767
  • https://www.mathnet.ru/eng/mzm/v89/i6/p856
  • This publication is cited in the following 41 articles:
    1. Makhmud Sadybekov, Batirkhan Turmetov, Trends in Mathematics, 1, Extended Abstracts MWCAPDE 2023, 2024, 187  crossref
    2. Karlygash Dosmagulova, Baltabek Kanguzhin, Trends in Mathematics, 5, Women in Analysis and PDE, 2024, 145  crossref
    3. Andrés F. Guerra Riaño, Péter L. Várkonyi, “Structural form finding using the Stress Density Method: Well-posedness and convergence of numerical solutions”, International Journal of Solids and Structures, 2024, 113156  crossref
    4. Baltabek KANGUZHİN, Karlygash DOSMAGULOVA, “Well-posed problems for the Laplace-Beltrami operator on a punctured two-dimensional sphere”, Advances in the Theory of Nonlinear Analysis and its Application, 7:2 (2023), 428  crossref
    5. Kanguzhin B.E., Tulenov K.S., “Correctness of the Definition of the Laplace Operator With Delta-Like Potentials”, Complex Var. Elliptic Equ., 67:4 (2022), 898–920  crossref  mathscinet  isi
    6. Baltabek Kanguzhin, Yerkebulan Akanbay, Zhalgas Kaiyrbek, “On the Uniqueness of the Recovery of the Domain of the Perturbed Laplace Operator”, Lobachevskii J Math, 43:6 (2022), 1532  crossref
    7. Kanguzhin B., Fazullin Z., “On the Localization of the Spectrum of Some Perturbations of a Two-Dimensional Harmonic Oscillator”, Complex Var. Elliptic Equ., 66:6-7 (2021), 1194–1208  crossref  mathscinet  isi
    8. G. E. Abduakhitova, B. E. Kanguzhin, “Korrektnoe opredelenie ellipticheskikh operatorov vtorogo poryadka s tochechnymi vzaimodeistviyami i ikh rezolventy”, Matem. tr., 23:1 (2020), 3–15  mathnet  crossref
    9. Kanguzhin B.E., Tulenov K.S., “Singular Perturbations of Laplace Operator and Their Resolvents”, Complex Var. Elliptic Equ., 65:9 (2020), 1433–1444  crossref  mathscinet  isi  scopus
    10. Fazullin Z.Yu. Madibaiuly Zh. Yermekkyzy L., “Control of Vibrations of Elastically Fixed Objects Using Analysis of Eigenfrequencies”, Int. J. Math. Phys.-Kazakhstan, 11:2 (2020), 27–31  crossref  isi
    11. G. E. Abduakhitova, B. E. Kanguzhin, “The Correct Definition of Second-Order Elliptic Operators with Point Interactions and their Resolvents”, Sib. Adv. Math., 30:3 (2020), 153  crossref
    12. B. Kanguzhin, L. Zhapsarbaeva, Zh. Madibaiuly, “Lagrange formula for differential operators and self-adjoint restrictions of the maximal operator on a tree”, Eurasian Math. J., 10:1 (2019), 16–29  mathnet  crossref
    13. Bekbolat B., Kanguzhin B., Tokmagambetov N., “To the Question of a Multipoint Mixed Boundary Value Problem For a Wave Equation”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 4:326 (2019), 76–82  crossref  isi
    14. Bekbolat B. Nurakhmetov D.B. Tokmagambetov N. Rasa G.H.A., “On the Minimality of Systems of Root Functions of the Laplace Operator in the Punctured Domain”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 4:326 (2019), 92–109  crossref  isi
    15. Kanguzhin B.E., “Changes in a Finite Part of the Spectrum of the Laplace Operator Under Delta-Like Perturbations”, Differ. Equ., 55:10 (2019), 1328–1335  crossref  mathscinet  isi
    16. Nalzhupbayeva G., “Remark on the Eigenvalues of the M-Laplacian in a Punctured Domain”, Complex Anal. Oper. Theory, 12:3 (2018), 599–606  crossref  mathscinet  zmath  isi  scopus
    17. Nalzhupbayeva G., “Spectral Properties of One Elliptic Operator in a Punctured Domain”, AIP Conference Proceedings, 1997, ed. Ashyralyev A. Lukashov A. Sadybekov M., Amer Inst Physics, 2018, UNSP 020083-1  crossref  isi  scopus
    18. B. E. Kanguzhin, D. Dauitbek, “A maximum of the first eigenvalue of semibounded differential operator with a parameter”, Russian Math. (Iz. VUZ), 61:2 (2017), 10–16  mathnet  crossref  isi
    19. Koshkarbayev N., Kanguzhin B., “Lagrange Formula For Differential Operators on a Tree-Graph and the Resolvents of Well-Posed Restrictions of Operator”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conference Proceedings, 1880, eds. Kalmenov T., Sadybekov M., Amer Inst Physics, 2017, UNSP 050017  crossref  isi  scopus
    20. Nalzhupbayeva G., “Formulas For the Eigenvalues of the Iterated Laplacian With Singular Potentials”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conference Proceedings, 1880, ed. Kalmenov T. Sadybekov M., Amer Inst Physics, 2017, UNSP 050005  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:773
    Full-text PDF :302
    References:75
    First page:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025