Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 90, Issue 6, Pages 875–884
DOI: https://doi.org/10.4213/mzm8764
(Mi mzm8764)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic Integration of Symmetric Second-Order Quasidifferential Equations

N. N. Konechnaja

M. V. Lomonosov Pomor State University
Full-text PDF (499 kB) Citations (2)
References:
Abstract: This paper presents conditions on the coefficients of the equations
\begin{align*} -(p(f'-rf))'-\overline{r}p(f'-rf)+qf&=0, \\ -(P(f'-Rf))'-\overline{R}P(f'-Rf)+Qf&=0, \end{align*}
where $1/p$, $1/P$, $q$, $Q$, $r$, $R\in\mathcal{L}^1_{\mathrm{loc}(\mathbb{R}_+)}$, $p$, $P$, $q$, and $Q$ are real-valued functions, while $r$ and $R$ are complex-valued functions, as well as on the fundamental system of solutions of the second equation, which ensure the asymptotic proximity of the solutions of these equations. The results obtained are applied to the study of the spectral properties of the differential operator generated by the expression
$$ -y''+ \sum_{k=0}^{+\infty}h_k\delta(x-x_k)y,\qquad x_k \in \mathbb{R}_+,\quad h_k \in R, $$
in the space $\mathcal{L}^2(\mathbb{R}_+)$. In particular, we obtain conditions on $h_k$$x_k$ under which the limit-disk case is realized for this operator.
Keywords: second-order quasidifferential equation, quasiderivative, asymptotic proximity of functions, Liouville–Green asymptotic formulas, deficiency index of an operator, Sturm–Liouville operator.
Received: 25.01.2010
English version:
Mathematical Notes, 2011, Volume 90, Issue 6, Pages 850–858
DOI: https://doi.org/10.1134/S0001434611110241
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: N. N. Konechnaja, “Asymptotic Integration of Symmetric Second-Order Quasidifferential Equations”, Mat. Zametki, 90:6 (2011), 875–884; Math. Notes, 90:6 (2011), 850–858
Citation in format AMSBIB
\Bibitem{Kon11}
\by N.~N.~Konechnaja
\paper Asymptotic Integration of Symmetric Second-Order Quasidifferential Equations
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 6
\pages 875--884
\mathnet{http://mi.mathnet.ru/mzm8764}
\crossref{https://doi.org/10.4213/mzm8764}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962962}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 6
\pages 850--858
\crossref{https://doi.org/10.1134/S0001434611110241}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298659000024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855179889}
Linking options:
  • https://www.mathnet.ru/eng/mzm8764
  • https://doi.org/10.4213/mzm8764
  • https://www.mathnet.ru/eng/mzm/v90/i6/p875
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025