Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 5, Pages 704–720
DOI: https://doi.org/10.4213/mzm8717
(Mi mzm8717)
 

This article is cited in 13 scientific papers (total in 13 papers)

Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating Coefficients

V. M. Deundyak

Southern Federal University
References:
Abstract: In the space $L_p(\mathbb R^n)$, $1<p<+\infty$, we consider a new class of integral operators with kernels homogeneous of degree $-n$, which includes the class of operators with homogeneous $SO(n)$-invariant kernels; we study the Banach algebra generated by such operators with multiplicatively weakly oscillating coefficients. For operators from this algebra, we define a symbol in terms of which we formulate a Fredholm property criterion and derive a formula for calculating the index. An important stage in obtaining these results is the establishment of the relationship between the operators of the class under study and the operators of one-dimensional convolution with weakly oscillating compact coefficients.
Keywords: multidimensional integral operator, operators with multiplicatively weakly oscillating coefficients, homogeneous kernel, convolution operator, the space $L_p(\mathbb R^n)$.
Received: 15.05.2009
English version:
Mathematical Notes, 2010, Volume 87, Issue 5, Pages 672–686
DOI: https://doi.org/10.1134/S000143461005007X
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. M. Deundyak, “Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating Coefficients”, Mat. Zametki, 87:5 (2010), 704–720; Math. Notes, 87:5 (2010), 672–686
Citation in format AMSBIB
\Bibitem{Deu10}
\by V.~M.~Deundyak
\paper Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating Coefficients
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 5
\pages 704--720
\mathnet{http://mi.mathnet.ru/mzm8717}
\crossref{https://doi.org/10.4213/mzm8717}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766585}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 5
\pages 672--686
\crossref{https://doi.org/10.1134/S000143461005007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279600700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954418871}
Linking options:
  • https://www.mathnet.ru/eng/mzm8717
  • https://doi.org/10.4213/mzm8717
  • https://www.mathnet.ru/eng/mzm/v87/i5/p704
  • This publication is cited in the following 13 articles:
    1. O. G. Avsyankin, Springer Proceedings in Mathematics & Statistics, 357, Operator Theory and Harmonic Analysis, 2021, 39  crossref
    2. V. V. Denisenko, V. M. Deundyak, “Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group”, Proc. Steklov Inst. Math., 308 (2020), 155–167  mathnet  crossref  crossref  mathscinet  isi  elib
    3. V. M. Deundyak, A. V. Lukin, “Proektsionnyi metod resheniya uravnenii dlya mnogomernykh operatorov s anizotropno odnorodnymi yadrami kompaktnogo tipa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:2 (2019), 153–165  mathnet  crossref  elib
    4. V. V. Denisenko, V. M. Deundyak, “Obratimost integralnykh operatorov s odnorodnymi yadrami kompaktnogo tipa na gruppe Geizenberga”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:3 (2018), 5–18  mathnet  crossref
    5. V. M. Deundyak, “Two-Dimensional Homogenous Integral Operators and Singular Operators with Measurable Coefficients in Fibers”, J Math Sci, 219:1 (2016), 57  crossref
    6. V. M. Deundyak, “Convolution Operators with Weakly Oscillating Coeffcients in Hilbert Moduli on Groups and Applications”, J Math Sci, 208:1 (2015), 100  crossref
    7. Elena M., “Boundedness and Invertibility of Multidimensional Integral Operators With Anisotropically Homogeneous Kernels in Weighted l-P-Spaces”, 10th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, AIP Conference Proceedings, 1637, ed. Sivasundaram S., Amer Inst Physics, 2014, 663–672  crossref  isi  scopus
    8. Vladimir Mikhaylovich Deundyak, Elena Anatolyevna Romanenko, “FREDHOLM PROPERTY OF COMPOSITE TWO-DIMENSIONAL INTEGRAL OPERATORS WITH HOMOGENEOUS SINGULAR-TYPE KERNELS IN pL SPACE”, Vestnik Donskogo gosudarstvennogo tehničeskogo universiteta, 14:1 (2014), 22  crossref
    9. Deundyak V.M., Lukin A.V., “Priblizhennyi metod resheniya operatornykh uravnenii svertki na gruppe $R^n$ s kompaktnymi koeffitsientami i prilozheniya”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2013, no. 6(178), 5–8  elib
    10. V. M. Deundyak, E. I. Miroshnikova, “The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients”, Russian Math. (Iz. VUZ), 56:7 (2012), 1–14  mathnet  crossref  mathscinet
    11. Miroshnikova E.I., “Ogranichennost i obratimost integralnykh operatorov s odnorodnymi yadrami kompaktnogo tipa v nekotorykh vesovykh $l_p$-prostranstvakh”, Izv. vuzov. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2012, no. 2, 22–26  elib
    12. V. M. Deundyak, “Topological methods in solvability theory of multidimensional pair integral operators with homogeneous kernels of compact type”, Proc. Steklov Inst. Math., 278 (2012), 51–59  mathnet  crossref  mathscinet  isi  elib  elib
    13. Deundyak V.M., Miroshnikova E.I., “Vychislenie indeksa mnogomernykh integralnykh operatorov s anizotropno odnomernymi yadrami kompaktnogo tipa”, Matematika i ee prilozheniya. zhurnal ivanovskogo matematicheskogo obschestva, 2011, no. 1, 39–48  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:775
    Full-text PDF :313
    References:84
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025