Abstract:
In the space $L_p(\mathbb R^n)$, $1<p<+\infty$, we consider a new class of integral operators with kernels homogeneous of degree $-n$, which includes the class of operators with homogeneous $SO(n)$-invariant kernels; we study the Banach algebra generated by such operators with multiplicatively weakly oscillating coefficients. For operators from this algebra, we define a symbol in terms of which we formulate a Fredholm property criterion and derive a formula for calculating the index. An important stage in obtaining these results is the establishment of the relationship between the operators of the class under study and the operators of one-dimensional convolution with weakly oscillating compact coefficients.
Keywords:
multidimensional integral operator, operators with multiplicatively weakly oscillating coefficients, homogeneous kernel, convolution operator, the space $L_p(\mathbb R^n)$.
Citation:
V. M. Deundyak, “Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating Coefficients”, Mat. Zametki, 87:5 (2010), 704–720; Math. Notes, 87:5 (2010), 672–686
\Bibitem{Deu10}
\by V.~M.~Deundyak
\paper Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating Coefficients
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 5
\pages 704--720
\mathnet{http://mi.mathnet.ru/mzm8717}
\crossref{https://doi.org/10.4213/mzm8717}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766585}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 5
\pages 672--686
\crossref{https://doi.org/10.1134/S000143461005007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279600700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954418871}
Linking options:
https://www.mathnet.ru/eng/mzm8717
https://doi.org/10.4213/mzm8717
https://www.mathnet.ru/eng/mzm/v87/i5/p704
This publication is cited in the following 13 articles:
O. G. Avsyankin, Springer Proceedings in Mathematics & Statistics, 357, Operator Theory and Harmonic Analysis, 2021, 39
V. V. Denisenko, V. M. Deundyak, “Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group”, Proc. Steklov Inst. Math., 308 (2020), 155–167
V. M. Deundyak, A. V. Lukin, “Proektsionnyi metod resheniya uravnenii dlya mnogomernykh operatorov s anizotropno odnorodnymi yadrami kompaktnogo tipa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:2 (2019), 153–165
V. V. Denisenko, V. M. Deundyak, “Obratimost integralnykh operatorov s odnorodnymi yadrami kompaktnogo tipa na gruppe Geizenberga”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:3 (2018), 5–18
V. M. Deundyak, “Two-Dimensional Homogenous Integral Operators and Singular Operators with Measurable Coefficients in Fibers”, J Math Sci, 219:1 (2016), 57
V. M. Deundyak, “Convolution Operators with Weakly Oscillating Coeffcients in Hilbert Moduli on Groups and Applications”, J Math Sci, 208:1 (2015), 100
Elena M., “Boundedness and Invertibility of Multidimensional Integral Operators With Anisotropically Homogeneous Kernels in Weighted l-P-Spaces”, 10th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, AIP Conference Proceedings, 1637, ed. Sivasundaram S., Amer Inst Physics, 2014, 663–672
Vladimir Mikhaylovich Deundyak, Elena Anatolyevna Romanenko, “FREDHOLM PROPERTY OF COMPOSITE TWO-DIMENSIONAL INTEGRAL OPERATORS WITH HOMOGENEOUS SINGULAR-TYPE KERNELS IN pL SPACE”, Vestnik Donskogo gosudarstvennogo tehničeskogo universiteta, 14:1 (2014), 22
Deundyak V.M., Lukin A.V., “Priblizhennyi metod resheniya operatornykh uravnenii svertki na gruppe $R^n$ s kompaktnymi koeffitsientami i prilozheniya”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2013, no. 6(178), 5–8
V. M. Deundyak, E. I. Miroshnikova, “The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients”, Russian Math. (Iz. VUZ), 56:7 (2012), 1–14
Miroshnikova E.I., “Ogranichennost i obratimost integralnykh operatorov s odnorodnymi yadrami kompaktnogo tipa v nekotorykh vesovykh $l_p$-prostranstvakh”, Izv. vuzov. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2012, no. 2, 22–26
V. M. Deundyak, “Topological methods in solvability theory of multidimensional pair integral operators with homogeneous kernels of compact type”, Proc. Steklov Inst. Math., 278 (2012), 51–59
Deundyak V.M., Miroshnikova E.I., “Vychislenie indeksa mnogomernykh integralnykh operatorov s anizotropno odnomernymi yadrami kompaktnogo tipa”, Matematika i ee prilozheniya. zhurnal ivanovskogo matematicheskogo obschestva, 2011, no. 1, 39–48