Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 4, Pages 554–571
DOI: https://doi.org/10.4213/mzm8699
(Mi mzm8699)
 

This article is cited in 5 scientific papers (total in 5 papers)

Peierls Substitution and the Maslov Operator Method

V. V. Grushinab, S. Yu. Dobrokhotovac

a Moscow Institute of Physics and Technology
b Moscow State Institute of Electronics and Mathematics
c A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Full-text PDF (584 kB) Citations (5)
References:
Abstract: We consider a periodic Schrödinger operator in a constant magnetic field with vector potential $A(x)$. A version of adiabatic approximation for quantum mechanical equations with rapidly varying electric potentials and weak magnetic fields is the Peierls substitution which, in appropriate dimensionless variables, permits writing the pseudodifferential equation for the new auxiliary function: $\mathscr E^{\nu}(-i\mu\partial_x,x)\phi=E\phi$, where $\mathscr E^{\nu}$ is the corresponding energy level of some auxiliary Schrödinger operator, assumed to be nondegenerate, and $\mu$ is a small parameter. In the present paper, we use V. P. Maslov's operator method to show that, in the case of a constant magnetic field, such a reduction in any perturbation order leads to the equation $\mathscr{E}^{\nu}(\widehat P,\mu)\phi=E\phi$ with the operator $\mathscr{E}^{\nu}(\widehat P,\mu)$ represented as a function depending only on the operators of kinetic momenta $\widehat P_j=-i\mu\partial_{x_j}+A_j(x)$.
Keywords: Peierls substitution, pseudodifferential equation, kinetic momentum, adiabatic approximation, periodic Schrödinger operator, stationary phase method.
Received: 16.10.2009
English version:
Mathematical Notes, 2010, Volume 87, Issue 4, Pages 521–536
DOI: https://doi.org/10.1134/S0001434610030302
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. V. Grushin, S. Yu. Dobrokhotov, “Peierls Substitution and the Maslov Operator Method”, Mat. Zametki, 87:4 (2010), 554–571; Math. Notes, 87:4 (2010), 521–536
Citation in format AMSBIB
\Bibitem{GruDob10}
\by V.~V.~Grushin, S.~Yu.~Dobrokhotov
\paper Peierls Substitution and the Maslov Operator Method
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 4
\pages 554--571
\mathnet{http://mi.mathnet.ru/mzm8699}
\crossref{https://doi.org/10.4213/mzm8699}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2762743}
\zmath{https://zbmath.org/?q=an:1197.35086}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 4
\pages 521--536
\crossref{https://doi.org/10.1134/S0001434610030302}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279034600030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954022920}
Linking options:
  • https://www.mathnet.ru/eng/mzm8699
  • https://doi.org/10.4213/mzm8699
  • https://www.mathnet.ru/eng/mzm/v87/i4/p554
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:831
    Full-text PDF :289
    References:88
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024