|
This article is cited in 12 scientific papers (total in 12 papers)
Character Sums over Shifted Primes
J. B. Friedlandera, K. Gongb, I. E. Shparlinskic a University of Toronto
b Henan University
c Macquarie University
Abstract:
We obtain a new bound for sums of a multiplicative character modulo an integer $q$ at shifted primes $p+a$ over primes $p\le N$. Our bound is nontrivial starting with $N\ge q^{8/9+\varepsilon}$ for any $\varepsilon>0$. This extends the range of the bound of Z. Kh. Rakhmonov that is nontrivial for $N\ge q^{1+\varepsilon}$.
Keywords:
nonprincipal character, von Mangoldt function, primitive character, Euler function, sieve of Eratosthenes, Möbius function, Legendre formula.
Received: 29.11.2009
Citation:
J. B. Friedlander, K. Gong, I. E. Shparlinski, “Character Sums over Shifted Primes”, Mat. Zametki, 88:4 (2010), 605–619; Math. Notes, 88:4 (2010), 585–598
Linking options:
https://www.mathnet.ru/eng/mzm8692https://doi.org/10.4213/mzm8692 https://www.mathnet.ru/eng/mzm/v88/i4/p605
|
|