Abstract:
We study the problem of describing the self-adjoint subspace of the transport operator in an unbounded domain. It is proved that this subspace is nontrivial under perturbations having a gap lattice of arbitrarily small length for the one-velocity operator with polynomial collision integral. We also consider the three-dimensional transport operator.
Keywords:
transport operator, collision integral, Lebesgue spectrum, self-adjoint subspace, isomorphism.
Citation:
R. V. Romanov, M. A. Tikhomirov, “On the Self-Adjoint Subspace of the One-Velocity Transport Operator”, Mat. Zametki, 89:1 (2011), 91–103; Math. Notes, 89:1 (2011), 106–116
\Bibitem{RomTik11}
\by R.~V.~Romanov, M.~A.~Tikhomirov
\paper On the Self-Adjoint Subspace of the One-Velocity Transport Operator
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 1
\pages 91--103
\mathnet{http://mi.mathnet.ru/mzm8599}
\crossref{https://doi.org/10.4213/mzm8599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841496}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 1
\pages 106--116
\crossref{https://doi.org/10.1134/S0001434611010111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288653100011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952365554}
Linking options:
https://www.mathnet.ru/eng/mzm8599
https://doi.org/10.4213/mzm8599
https://www.mathnet.ru/eng/mzm/v89/i1/p91
This publication is cited in the following 2 articles:
St. Petersburg Math. J., 35:1 (2024), 217–232
Romanov R., “Estimates of solutions of linear neutron transport equation at large time and spectral singularities”, Kinet. Relat. Models, 5:1 (2012), 113–128