Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 1, Pages 13–28
DOI: https://doi.org/10.4213/mzm8575
(Mi mzm8575)
 

On the Continuity of the Sharp Constant in the Jackson–Stechkin Inequality in the Space $L^2$

V. S. Balaganskii

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: This paper deals with the continuity of the sharp constant $K(T,X)$ with respect to the set $T$ in the Jackson–Stechkin inequality
$$ E(f,L)\le K(T,X)\omega(f,T,X), $$
where $E(f,L)$ is the best approximation of the function $f\in X$ by elements of the subspace $L\subset X$, and $\omega$ is a modulus of continuity, in the case where the space $L^2(\mathbb T^d,\mathbb C)$ is taken for $X$ and the subspace of functions $g\in L^2(\mathbb T^d,\mathbb C)$, for $L$. In particular, it is proved that the sharp constant in the Jackson–Stechkin inequality is continuous in the case where $L$ is the space of trigonometric polynomials of $n$th order and the modulus of continuity $\omega$ is the classical modulus of continuity of $r$th order.
Keywords: approximation of a function, Jackson–Stechkin inequality, trigonometric polynomial, the space $L^2$, Tietze–Urysohn theorem, modulus of continuity, extremal function.
Received: 10.06.2009
Revised: 23.03.2012
English version:
Mathematical Notes, 2013, Volume 93, Issue 1, Pages 12–28
DOI: https://doi.org/10.1134/S0001434613010021
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. S. Balaganskii, “On the Continuity of the Sharp Constant in the Jackson–Stechkin Inequality in the Space $L^2$”, Mat. Zametki, 93:1 (2013), 13–28; Math. Notes, 93:1 (2013), 12–28
Citation in format AMSBIB
\Bibitem{Bal13}
\by V.~S.~Balaganskii
\paper On the Continuity of the Sharp Constant in the Jackson--Stechkin Inequality in the Space~$L^2$
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 1
\pages 13--28
\mathnet{http://mi.mathnet.ru/mzm8575}
\crossref{https://doi.org/10.4213/mzm8575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205942}
\zmath{https://zbmath.org/?q=an:1271.42001}
\elib{https://elibrary.ru/item.asp?id=20731656}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 1
\pages 12--28
\crossref{https://doi.org/10.1134/S0001434613010021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900002}
\elib{https://elibrary.ru/item.asp?id=20431927}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874566262}
Linking options:
  • https://www.mathnet.ru/eng/mzm8575
  • https://doi.org/10.4213/mzm8575
  • https://www.mathnet.ru/eng/mzm/v93/i1/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024