|
This article is cited in 3 scientific papers (total in 3 papers)
An Estimate for the Sum of Legendre Symbols
E. A. Grechnikov M. V. Lomonosov Moscow State University
Abstract:
For the sum $S$ of the Legendre symbols of a polynomial of odd degree $n\ge3$ modulo primes $p\ge3$, Weil's estimate $|S|\le(n-1)\sqrt p$ and Korobov's estimate
$$
|S|\le (n-1)\sqrt{p-\frac{(n-3)(n-4)}{4}}\qquad \text{for}\quad p\ge\frac{n^2+9}{2}
$$
are well known. In this paper, we prove a stronger estimate, namely,
$$
|S|<(n-1)\sqrt{p-\frac{(n-3)(n+1)}{4}}.
$$
Keywords:
polynomial of odd degree, Legendre symbol, Weil's estimate, Korobov's estimate.
Received: 15.07.2009
Citation:
E. A. Grechnikov, “An Estimate for the Sum of Legendre Symbols”, Mat. Zametki, 88:6 (2010), 859–866; Math. Notes, 88:6 (2010), 819–826
Linking options:
https://www.mathnet.ru/eng/mzm8562https://doi.org/10.4213/mzm8562 https://www.mathnet.ru/eng/mzm/v88/i6/p859
|
|